您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于离散时差检测的流量计不同步计数误差补偿技术

基于离散时差检测的流量计不同步计数误差补偿技术

2910    2017-02-16

免费

全文售价

作者:江境宏, 刘桂雄, 黄坚

作者单位:华南理工大学机械与汽车工程学院, 广东 广州 510640


关键词:流量计;脉冲计数补偿;多路不同步信号;离散时差


摘要:

为缩小计数误差、提高流量标准装置计量精度,基于离散时差检测提出一种无需信号预处理的流量计不同步计数误差补偿技术。首先,根据多工位流量计脉冲计数原理,提出基于时差检测的计数误差补偿机理;其次,根据流量计脉冲离散信号特性,推导得多工位脉冲计数误差补偿的离散形式;最后,在具有4台流量计的多工位流量计标准装置中实现工程应用,并进行模拟试验与工程应用试验。结果表明:在脉冲信号周期稳定的模拟试验中,经补偿后脉冲计数误差小于0.007 7个,在工程应用中,经补偿后脉冲计数误差小于0.043 2个。


Asynchronous counting error compensation technique for flowmeters based on discrete time difference detection

JIANG Jinghong, LIU Guixiong, HUANG Jian

School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510640, China

Abstract: In order to reduce counting error and improve the measurement accuracy of flow device, an asynchronous counting error compensation technique for flowmeters based on discrete time difference detection which does not require preprocessing procedures is proposed. Firstly, according to the pulse counting principle of multichannel flowmeters, a counting error compensation technique is delivered based on discrete time difference detection. Then, the discrete form of pulse counting error compensation for multi-position is derived in view of the characteristic of pulse discrete signal of flowmeter. At last, engineering applications and simulation tests are conducted in a multi-station meter standard device with four flowmeters. The results show that, in the simulation tests of pulse signal with steady periodic, the pulse counting error after compensating is less than 0.007 7, and in engineering applications, the pulse counting error after compensating is less than 0.043 2.

Keywords: flowmeter;pulse counting compensation;asynchronous signal;discrete time difference

2017, 43(1): 23-26  收稿日期: 2016-08-15;收到修改稿日期: 2016-09-28

基金项目: 广东省省级科技计划项目(2016A040403044)

作者简介: 江境宏(1992-),男,广东揭阳市人,硕士研究生,专业方向为智能传感技术与网络化测控。

参考文献

[1] 黄坚,卢嘉敏,刘桂雄,等. 面向流量计检定装置的流量计脉冲信号预处理方法[J]. 电子测量与仪器学报,2015, 29(12):1870-1875.
[2] 杨茹,刘桂雄,万勇,等. 基波相位补偿脉冲输出式流量计检定新方法[J]. 自动化仪表,2015(12):71-74.
[3] 刘桂雄,万勇,黄坚,等. 级联自适应陷波器设计及不同步脉冲计数补偿[J]. 华南理工大学学报(自然科学版),2016(5):84-89.
[4] LIU L, LIN T, CAO J, et al. A novel algorithm for synchronized phasor measurement based on time-freque ncy transform[C]//Power System Technology(Powercon),2010:1-6.
[5] 张志文,王承林,王伟,等. 新型多周期同步和倍频锁相的频率跟踪技术[J]. 电力系统及其自动化学报,2009(5):119-123.
[6] 张朋,王厚军,田书林,等. 多路相移时间戳IFM算法研究及实现[J]. 仪器仪表学报,2013,34(11):2435-2441.
[7] JANSSON J P, MANTYNIEMI A, KOSTAMOVAARA J. Synchronization in a multilevel CMOS time-to-digital converter[J]. Circuits and Systems I:Regular Papers, IEEE Transactions,2009,56(8):1622-1634.
[8] VERCESI L, LISCIDINI A, CASTELLO R. Two-dimensions vernier time-to-digital converter[J]. Solid-State Circuits, IEEE Journal, 2010,45(8):1504-1512.
[9] UGUR C, KORCYL G, MICHEL J, et al. 264 Channel TDC Platform applying 65 channel high precision (7.2 psRMS) FPGA based TDCs[C]//2013 IEEE Nordic Mediternanean Workshop on Time to Digital Converters.Perugia:IEEE,2013.
[10] KERÄNEN P, KOSTAMOVAARA J. A Wide Range, 4.2 ps(rms) Precision CMOS TDC With Cyclic Interpolators Based on Switched-Frequency Ring Oscillators[J]. Circuits and Systems I:Regular Papers, IEEE Transactions,2015,62(12):2795-2805.
[11] 王彦东,邵英,王黎明,等. 基于FPGA的智能高精度频率测量设计[J]. 中国测试,2014,40(4):119-123.
[12] SHEN Q, LIU S B, QI B X, et al. A 1.7 ps Equivalent Bin Size and 4.2 ps RMS FPGA TDC Based on Multichain Measurements Averaging Method[J]. Nuclear Science, IEEE Transactions,2015,62(3):947-954.
[13] 周维波,杨志军. 基于TMS320F2812的正交编码脉冲采集实现[J]. 中国测试,2016,42(5):75-78.
[14] 陈洁,刁品高. 涡街流量计信号处理方法研究与系统设计[J]. 中国测试,2015,41(2):105-109.