您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>面向动力锂电池内部视电阻率三维反演成像方法

面向动力锂电池内部视电阻率三维反演成像方法

2587    2017-03-09

免费

全文售价

作者:谢烁熳, 许维蓥, 洪晓斌

作者单位:华南理工大学机械与汽车工程学院, 广东 广州 510640


关键词:视电阻率;三维图像反演;高斯-牛顿算法;动力锂电池


摘要:

为满足电阻层析成像方法应用于动力锂电池内部结构状态监测的精度与实时性要求,提出一种三维电阻层析成像反演算法。针对高斯-牛顿算法的特点,对标准高斯-牛顿算法施加光滑约束,使迭代步长在保证收敛的情况下达到最优化。根据动力锂电池内部视电阻率三维反演成像实验获得的测量结果,研究常规高斯-牛顿算法和光滑约束高斯-牛顿算法的反演能力。结果表明:光滑约束高斯-牛顿算法收敛快,提高了检测效率,能够反映动力锂电池内部的视电阻率变化趋势,并对动力锂电池内部的视电阻率分布做出有效评估。


Three-dimensional image reconstruction of apparent resistivity for power battery cell

XIE Shuoman, XU Weiying, HONG Xiaobin

School of Mechanical Engineering, South China University of Technology, Guangzhou 510640, China

Abstract: Aiming to make image reconstruction algorithm for electrical resistance tomography(ERT) meet the acquirement of measurement for monitoring of internal structure of power battery in terms of precision and real-time, a newalgorithm for three-dimensional ERT image reconstruction is proposed. With the characteristics of the Gauss-Newton algorithm, the standard Gauss-Newton algorithm is applied to smooth constraint, which achieve the optimization of iteration step in the premise of ensuring convergence. The results showed that the algorithm of three-dimensional image with fast convergence and high accuracy improved the detection efficiency and expand the detection range; the algorithm can reflect the tendency of the apparent resistivity of the internal structure of power battery and estimate the distribution of the apparent resistivity of the internal structure of power battery, which meet the need of the measurement.

Keywords: apparent resistivity;three-dimensional image reconstruction;Gauss-Newton algorithm;power battery

2017, 43(2): 119-124  收稿日期: 2016-06-20;收到修改稿日期: 2016-08-05

基金项目: 广东省科技计划项目(2016B010108001);广州市科技计划项目(201607010171);佛山市科技创新专项资金项目(2014HK100265、2016AG100255)

作者简介: 谢烁熳(1992-),女,广东揭阳市人,硕士研究生,专业方向为网络化测量与智能传感技术。

参考文献

[1] OH S H, KIM M, LEE J B. Influence of safety valve pressure on gelled electrolyte valve-regulated lead/acid batteries under deep cycling applications[J]. Journal of Bulletin of the Korean Chemcal Society,2002,23(1):75-80.
[2] MCCLEARY D A H, MEYERS J P, KIM B. Three-dimensional modeling of electro-chemical performance and heat generation of spirally and prismatically wound lithium-ion batteries[J]. Journal of the Electrochemical Society,2013,160(11):1931-1943.
[3] 于申军,周永超. 内阻差异对锂离子电池组安全性能的影响[J]. 化工学报,2010,61(11):2960-2964.
[4] TYAGI R C, MATHUR R S. Measurement of high temperature thermal conductivity of metals[J]. Journal of Physics D: Applied Physics,1970(3):1811-1815.
[5] NICK P, WILLIAM R B L. A matlabtoolkit for three-dimensional electrical impedance tomography: A contribution to the electrical impedance and diffuse optical reconstruction software project[J]. Meas Sci Technol,2002, 13(12):1871-1883.
[6] ZHDANOV M S, YOSHIOKA K. Cross-well electromagnetic imaging in three dimensions[J]. Exploration Geophysics,2003,34(1-2):34-40.
[7] DOETSCH J, LINDE N, VOGT T, et al. Imaging and quantifying salt-tracer transport in a riparian groundwater system by means of 3D ERT monitoring[J]. Geophysics,2012(77):207-218.
[8] 徐光捷,杨献勇,陈鸥. 电阻层析成像场域的三维仿真[J].清华大学学报,2005,45(2):231-234.
[9] 李守晓,王化祥. 基于三维模型的改进正则化ERT成像算法[J]. 天津大学学报,2012,45(3):215-220.
[10] 洪晓斌,李年智,尹文伟. 基于电阻层析成像的汽车动力电池内部温度监测[J]. 光学精密工程,2014,22(1):193-203.
[11] 洪晓斌,李年智,谢烁熳,等. 动力电池内部视电阻率三维测量装置设计[J]. 中国测试,2015,41(1):61-65.