您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>电子元器件镍金复合镀层厚度测试方法研究

电子元器件镍金复合镀层厚度测试方法研究

3381    2017-04-01

免费

全文售价

作者:刘磊, 卢思佳, 周帅, 王斌

作者单位:工业和信息化部电子第五研究所, 广东 广州 510610


关键词:复合金属镀层;厚度测量;X射线荧光测厚法;培养基片法;影响因子


摘要:

目前,电子元器件复合金属镀层厚度的测量主要采用具有破坏性的金相切片法,该方法会对样品造成不可逆损伤。鉴于此,该文提出先培养基片,再通过X射线荧光测厚仪测量复合镀层厚度的基于过程工艺控制的无损检测法,并探究双层和三层镍金复合镀层结构,得到内层镀层对外层镀层测量的影响因子,并研究其测量误差。实验结果表明:该培养基片法在不破坏样品的情况下实现电子元器件复合金属镀层厚度的精确测量,为电子元器件生产过程中复合镀层厚度的控制提供技术支持,进一步完善电子元器件镀涂工艺。


Research on test method of nickel gold composite coating thickness of electronic component

LIU Lei, LU Sijia, ZHOU Shuai, WANG Bin

The 5th Electronics Research Institute of the Ministry of Industry and Information Technology, Guangzhou 510610, China

Abstract: Presently, the thickness of composite metal coating on electronic component was mainly measured by the metallographic method, which was destructive, leading irreversible damage to the samples. To solve this problem, a non-destructive measurement based on the process control was proposed, i.e., substrate-culturing method. This strategy involved two steps, cultivating the substrate and then measuring the thickness of the metal coating by X-ray fluorescence gauge. The structure of double-deck and triple-deck nickelgold composites coatings were also investigated, revealing the influence of the inner coating on the thickness measurement of the outer coating and its related measuring error. All these observations indicate that the proposed substrate-culturing method can accurately measure thickness without any sample destruction. This offers technological support for the coating thickness control during the electronic components production and further improves the electronic plating coating technology.

Keywords: metal composite coating;thickness measurement;X-ray fluorescence thickness measurement method;substrate-culturing method;influence factor

2017, 43(3): 9-14  收稿日期: 2016-09-20;收到修改稿日期: 2016-10-09

基金项目: 

作者简介: 刘磊(1988-),男,安徽淮北市人,工程师,硕士,主要从事电子元器件DPA与物理测试方面的研究。

参考文献

[1] 刘磊,黄波,卢思佳. 复合金属镀层测试方法研究[J]. 电子产品可靠性与环境试验,2015(6):43-46.
[2] 王强兵,郭继平. X荧光镀层厚度测量条件选择及方法研究[J]. 现代测量与实验室管理,2011(2):7-9,11.
[3] 王强兵. X荧光测厚仪研究[J]. 计量与测试技术,2010,37(3):30-31.
[4] 吕剑. X射线测厚仪在镀锌线生产线的应用[J]. 工业技术,2013(25):114.
[5] 朱小平. JJF 1306——2011《X射线荧光镀层测厚仪校准规范》解读[J]. 中国计量,2012(8):128-129.
[6] Standard test method for measurement of coating thick ness by X-ray spectrometry:ASTM B568-98[S]. 2004.
[7] 杨红军,谭俊,郭文才. 电刷镀Cu/Ni纳米复合多层膜的微动磨损性能[J]. 电镀与涂饰,2006,25(6):1-3.
[8] 周林平,于友姬,庄喻韬. 金属镀层测量之SEM法[J]. 新材料产业,2013(4):48-50.
[9] 闫洪. 金属镀层金相试样的制备和显微分析[J]. 涂料涂装与电镀,2006(5):35-37.
[10] 机械电子工业部第二研究所. 金属镀覆层厚度测量方法:SJ 20129——1992[S]. 北京:中国标准出版社,1992.
[11] 刘英坤,伍超群,李志. 金相法测量镀镍层厚度的不确定度评定[J]. 理化检验(物理分册),2014,50(2):131-132,136.
[12] 张欣宇,王时礼,钟喜春. 金属镀层厚度测量结果的一致性研究[J]. 计量与测试技术,2014,41(4):1-3.
[13] Standard test method for measurement of metal and oxide coating thickness by microscopical examination of a cross section:ASTM B487-85[S]. 2007.
[14] Standard test method for simultaneous thickness and electrode potential determination of individual layers in multilayer nickel deposit(STEP Test):ASTM B764-04[S]. 2004.