您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>SiC晶体测温技术研究

SiC晶体测温技术研究

3351    2017-06-05

免费

全文售价

作者:张志学1, 薛秀生1, 阮永丰2, 王振华1, 张玉新1, 王维1, 叶贵明1

作者单位:1. 中国航发沈阳发动机研究所, 辽宁沈阳 110015;
2. 天津大学理学院, 天津 300072


关键词:航空发动机;测温技术;SiC晶体材料;晶体缺陷;中子辐照


摘要:

针对航空发动机结构复杂和工况条件苛刻的问题,研究基于SiC晶体材料的测温技术,解决航空发动机燃烧室、涡轮和尾喷管等高温部件的测温难题。选取国产6H-SiC晶体作为材料,进行6H-SiC晶体的中子辐照。研究晶体测温的温度判读方法,提出X射线衍射峰半高宽作为温度判读参数,测量温度可达1 600 ℃,测量精度达到1%,比国外晶体测温技术的测温范围更高。该测温技术具有微尺寸、微质量、无引线的非侵入式优点,可用于航空发动机及燃气轮机的高温测量。


Research of temperature measurement technology based on SiC crystal

ZHANG Zhixue1, XUE Xiusheng1, RUAN Yongfeng2, WANG Zhenhua1, ZHANG Yuxin1, WANG Wei1, YE Guiming1

1. AECC Shenyang Engine Research Institute, Shenyang 110015, China;
2. School of Science, Tianjin University, Tianjin 300072, China

Abstract: Concerning the complex structure and demanding working conditions of the aero-engine, this research attempted to solve the difficulty in measuring high-temperature components, such as the combustor, the turbine and the exhaust nozzle by using the measurement technique for SiC crystal materials. In this paper, chose 6H-SiC crystals made in China, and conducted neutron irradiation of 6H-SiC crystals. In analyzing temperature reading methods of crystal-based temperature measurement, the X-ray diffraction full width at half maximum was adopted as the temperature reading parameter. The measurement temperature could be reach 1 600℃, and the measurement accuracy reached 1%. Results suggested that the temperature measurement technique had a higher measurement scope compared with the foreign counterparts. With advantages of mini-size, mini-weight and lead-free no-invasion mode, the temperature measurement technique put forward in this paper is applicable to high-temperature measurement of the aero-engine and the gas turbine.

Keywords: aero-engine;temperature measurement technique;SiC crystal material;crystal defect;neutron irradiation

2017, 43(5): 1-4  收稿日期: 2016-10-10;收到修改稿日期: 2016-11-29

基金项目: 

作者简介: 张志学(1982-),男,辽宁沈阳市人,工程师,硕士,主要从事航空发动机测试技术研究及应用工作。

参考文献

[1] 张宝诚. 航空发动机试验和测试技术[M]. 北京:北京航空航天大学出版社,2005:640-702.
[2] 王振华. 航空发动机试验测试技术发展探讨[J]. 航空发动机,2014,40(6):47-51.
[3] Siemens SGT-800 industrial gas turbine enhanced to 47 MW design modifications and operation experience:GT 2008-50087[S]. 2008.
[4] Uniform crystal temprature sensor accuracy under transient conditions:GT 2012-68197[S]. 2012.
[5] 阮永丰,张兴,马鹏飞,等. 一种以中子辐照的碳化硅晶体为传感器的测温方法:200910069820[P]. 2009-12-09[2016-08-10].
[6] 靳正国,郭瑞松,师春生,等. 材料科学基础[M]. 天津:天津大学出版社,2011:150-193.
[7] 曹建中. 半导体材料的辐照效应[M]. 北京:科学出版社,1993:41-79.
[8] 郁金南. 材料辐照效应[M]. 北京:化学工业出版社,2007:466-467.
[9] VOLINSAKY A A, NIKOLEANKO V A, MOROZOV V A, et al. Irradiated single crystals for high temperature measurements in space application[J]. Mater Res Soc Symp Proc,2005(851):141-146.
[10] VOLINSKY A A, GINZBURSKY L. Irradiated cubic single crystal SiC as a high temperature sensor[J]. Mat Res Soc Symp Proc,2004(792):531-536.
[11] 王世忠. SiC单晶的性质、生长及应用[J]. 无机材料学报,2009,14(4):527-532.
[12] 施尔畏. 碳化硅晶体生长与缺陷[M]. 北京:科学出版社,2012:84-89.
[13] 徐世江,康飞宇. 核工程中的碳和石墨材料[M]. 北京:清华大学出版社,2010:135-249.
[14] 张海军,贾全利,董林. 粉末多晶X射线衍射技术原理及应用[M]. 郑州:郑州大学出版社,2010:91-101.
[15] 江超华. 多晶X射线衍射技术与应用[M]. 北京:化学工业出版社,2014:288-313.
[16] 周征,李建民,杨建平,等. 传感器原理与检测技术[M]. 北京:清华大学出版社,2014:29-36.