您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于统一时间基准的网络化微应变监测研究

基于统一时间基准的网络化微应变监测研究

2854    2017-08-02

免费

全文售价

作者:叶廷东1,2, 黄晓红1, 汪清明1

作者单位:1. 广东轻工职业技术学院, 广东 广州 510300;
2. 广东省科学院, 广东 广州 510070


关键词:微应变;时间同步;预测补偿;智能传感器


摘要:

针对大型工程结构微应变网络化监测的需求,该文设计一种网络化微应变智能传感系统,采用恒流源高精度测量电路解决微应变测量电路中存在的温度效应、桥路输出非线性、测量环境影响等问题;同时基于传感网络时间同步算法实现微应变监测网络时间基准的统一,进而通过预测补偿的方法改善由于网络不确定性造成的传感器信号采样延时问题。测试与仿真研究表明:微应变测量电路的测量误差为0.101%,时间同步算法的平均同步准确度可达29.03 s,网络传感信息的最大预测补偿误差为0.49%。


Research on network micro strain monitoring based on a uniform clock benchmark

YE Tingdong1,2, HUANG Xiaohong1, WANG Qingming1

1. Guangdong Industry Polytechnic, Guangzhou 510300, China;
2. Guangdong Academy of Sciences, Guangzhou 510070, China

Abstract: According to the network monitoring requirement of micro strain for large engineering structure, a networked micro strain intelligent sensing structure is designed in the article. The sensing system adopts high-precision measurement circuit based on constant current source to solve the temperature effect of micro strain measurement circuit, the non-linear output of bridge circuit, the influence of the measurement environment, etc.; Meanwhile, a uniform time reference of micro strain monitoring network is realized based on time synchronization algorithm of sensor networks, which can further solve the problem that sensor signal sampling delay caused by uncertainty of sensor network in predictive compensation method. Test and simulation results show that the measurement error of the micro strain measurement circuit is 0.101%, and the average synchronization precision of the time synchronization algorithm can reach 29.03 μs, and the maximum predictive compensation error of the network sensing information is 0.49%.

Keywords: micro strain;time synchronization;predictive compensation;intelligent sensor

2017, 43(7): 92-96  收稿日期: 2017-02-15;收到修改稿日期: 2017-04-24

基金项目: 中国博士后科学基金项目(2013M542157);广东省科技计划项目(2015A020214025,2015A070710030);省级"千百十工程"人才资助项目(RC2016-005);广州市科技计划项目(201604020049);创新强校工程项目(2A11105)

作者简介: 叶廷东(1976-),男,江西赣州市人,副教授,博士,研究方向为智能传感与现代检测装置。

参考文献

[1] NISHIMURA A, TAMURA H, IMAGAWA S, et al. Stress and strain measurement of the large helical device during coil excitation[J]. Fusion Engineering and Design,2001(58/59):253-257.
[2] 吴春利. 基于应变模态桥梁健康监测关键技术研究[D].长春:吉林大学,2012.
[3] SANTANA J, HOVEN R V D, LIEMPD C V, et al. A 3-axis accelerometer and strain sensor system for building integrity monitoring[J]. Sensors & Actuators A Physical,2012,188(12):141-147.
[4] 王豪,郑德智,邢维巍. 基于光电检测的振弦式应变传感器的设计与实现[J]. 传感技术学报,2014(12):1601-1605.
[5] 刘宝华. 多通道高精度应变测量技术研究[J]. 计量学报, 2003,24(3):205-210.
[6] 徐从裕,方文琼,孙雅琼,等. 光栅式宏/微应变传感器的设计[J]. 中国机械工程,2013,24(13):1715-1718.
[7] 郭晓澎,刘志英,周晓旭. 桥梁应变数据采集系统[J]. 电子测量技术,2016,39(4):136-139.
[8] SANTOS C A, COSTA C O, BATISTA J P. Long deck suspension bridge monitoring:the vision system calibration problem[J]. Strain,2012,48(2):108-123.
[9] 黄侨,李忠龙,沙学军,等. 基于应变式传感器的桥梁无线测试系统的试验[J]. 同济大学学报(自然科学版),2007, 35(10):1322-1325.
[10] 冯艳波,陈建政,舒丛丛. 基于ZigBee的无线动态应变测量[J]. 中国测试,2009,35(4):107-110.
[11] MOHAMMED A A S, MOUSSA W A, LOU E. High sensitivity MEMS strain sensor:design and simulation[J]. Sensors,2008,8(4):2642-2661.
[12] 王玉秀,黄剑,石欣,等. 基于分簇的低功耗多跳无线传感器网络层次时间同步算法[J]. 计算机应用,2013,33(2):369-373.
[13] 史昕,赵祥模,惠飞,等. 基于分量解耦融合的无线传感网时钟同步算法[J]. 计算机应用,2014,34(3):623-627.
[14] KUMAR A, SRIVASTAVA V, SINGH M K, et al. Current status of the IEEE 1451 standard-based sensor applications[J]. IEEE Sensors Journal,2014,15(5):2505-2513.
[15] 习友宝,古天祥. 基于双恒流源法的高精度应变测量技术[J]. 电子科技大学学报,2005,34(3):407-409.
[16] SU P. Delay measurement time synchronization for wireless sensor networks[Z]. IRB,2003:1-12.
[17] 韩永朋,安勇,牟荣增,等. 基于自动校准的WSNs时间同步算法[J]. 传感器与微系统,2013,32(8):128-130.