您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>裂解气相色谱-质谱法研究双酚A型聚砜的热裂解机理

裂解气相色谱-质谱法研究双酚A型聚砜的热裂解机理

2620    2017-08-02

免费

全文售价

作者:林丹丽1, 朱旭2, 查刘生2

作者单位:1. 东华大学分析测试中心, 上海 201620;
2. 东华大学 纤维材料改性国家重点实验室, 上海 201620


关键词:双酚A型聚砜;裂解气相色谱-质谱;热裂解机理;键裂能


摘要:

在热重分析测试结果的基础上,采用裂解气相色谱-质谱联用仪(PyGC-MS)分析双酚A型聚砜在500~700℃范围内不同温度下热裂解形成的产物种类及其相对含量。通过对比不同温度下的裂解产物,发现500℃时PSU裂解形成的主要产物是苯酚,550℃时才检测到SO2。随着裂解温度升高,裂解产物的种类增多,SO2的相对含量逐渐升高,直到700℃取代苯酚成为最主要的裂解产物。最后,该文根据不同温度下产生的裂解产物的种类及其相对含量推测PSU产生热裂解的机理。


Study on the pyrolysis mechanism of polysulfone by pyrolysis gas chromatography-mass spectroscopy

LIN Danli1, ZHU Xu2, ZHA Liusheng2

1. Research Center for Analysis and Measurement, Donghua University, Shanghai 201620, China;
2. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China

Abstract: Pyrolysates of polysulfone(PSU) at various temperatures within the temperature range from 500℃ to 700℃ and their relative contents were analyzed by pyrolysis gas chromatography-mass spectroscopy(PyGC-MS). It was found that its major pyrolysate produced at 500℃ was phenol, and sulfur dioxide as its pyrolysate was not produced until 550℃. As the pyrolysis temperature was elevated, the kinds of the generated pyrolysates were increased obviously, and the relative content of sulfur dioxide was gradually increased, becoming the richest pyrolysate at 700℃. Finally, the pyrolysis mechanism of PSU was speculated based on the pyrolysates formed at various temperatures and their relative contents.

Keywords: polysulfone;pyrolysis gas chromatography-mass spectroscopy;pyrolysis mechanism;bond dissociation energies

2017, 43(7): 49-53  收稿日期: 2017-01-09;收到修改稿日期: 2017-02-18

基金项目: 国家自然科学基金面上项目资助(51373030)

作者简介: 林丹丽(1977-),女,浙江温州市人,助理研究员,研究方向为色谱分析、聚合物结构分析。

参考文献

1] ELLISON S T, GIES A P, HERCULES D M, et al.Py-GC/MS and MALDI-TOF/TOF CID study of poly(phenyl sulfone) fragmentation reactions[J]. Macromolec-ules,2009,42(15):5526-5533.
[2] RYO M, MINORU I, YASUTOSHI I, et al. Study of the decomposition of propylene carbonate on lithium metal surface by pyrolysis-gas chromatography-mass spectroscopy[J]. Langmuir,2003,19(3):814-821.
[3] RYO M, MINORU I, YASUTOSHI I, et al. Study on the decomposition mechanism of alkyl carbonate on lithium metal by pyrolysis-gas chromatography-mass spectroscopy[J]. Journal of Power Sources,2003(119-121):597-603.
[4] 林丹丽,刘晓云,虞鑫海,等. 裂解气相色谱-质谱法研究聚醚酰亚胺的热裂解行为[J]. 分析科学学报,2009,25(1):83-86.
[5] GUO B H, CHEN L, YU J R, et al. The pyrolysis behaviors of ternary copolyimide derived from aromatic dianhydride and aromatic diisocyanates[J]. Journal of Applied Polymer Science,2014,131(8):40165.
[6] LI H, NIU S L, LU C M, et al. Comprehensive investigation of the thermal degradation characteristics of biodiesel and its feedstock oil through TGA-FTIR[J]. Energy & Fuels,2015,29(8):5145-5153.
[7] WERF I V, PALMISANO F, SABBATINI L. A pyrolysis-GC-MS investigation of poly(vinyl phenyl ketone)[J]. Journal of Analytical and Applied Pyrolysis,2009,86(1):233-238.
[8] FENG Y N, HAN G, ZHANG L L, et al. Rheology and phase inversion behavior of polyphenylenesulfone(PPSU) and sulfonated PPSU for membrane formation[J]. Polymer,2016(99):72-82.
[9] ELLISON S T, GIES A P, HERCULES D M, et al.Py-GC/MS and MALDI-TOF/TOF CID study of polysulfone fragmentation reactions[J]. Macromolecules,2009,42(8):3005-3013.
[10] KIRAN E, GILLHAM J K, GIPSTEIN E. Pyrolysis-molecular weight chromatography-vapor-phase infrared spectrophotometry:an on-line system for analysis of polymers. iii. thermal decomposition of polysulfones and polystyrene[J]. Journal of Applied Polymer Science,1977, 21(5):1159-1176.