您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于T-history法确定相变材料的相变区间和相变焓

基于T-history法确定相变材料的相变区间和相变焓

3915    2019-01-30

免费

全文售价

作者:何雨翔1, 冀志江1, 陆永平1, 刘蕊蕊1, 王静1, 胡庆红2, 金山2

作者单位:1. 中国建筑材料科学研究总院 绿色建筑材料国家重点实验室, 北京 100024;
2. 深圳市深装总装饰股份有限公司, 广东 深圳 518000


关键词:储能性能测试;相变焓;相变区间;T-history法;相变材料


摘要:

相变区间是决定相变材料使用性能的主要因素,也直接影响相变焓的计算。T-history法设备构造简单,测试试样体积大,可用于确定相变材料的相变区间和相变焓。选取癸酸、六水氯化钙复合物、石蜡3种典型相变材料,基于T-history法得到待测材料温度-时间曲线,改进计算过程得到相变材料焓温曲线。由温度-时间曲线的一阶,二阶导数选取切点,采用切线法确定相变区间,结合焓温曲线求得相变焓。3种材料测试结果:癸酸和石蜡相变起点和终点温度标准差均小于0.5 ℃,相变焓标准差率小于10%;六水氯化钙复合物结晶起点和终点温度标准差分别为1.9 ℃和0.8 ℃,融化起点和终点温度标准差小于0.5 ℃,相变焓标准差率小于10%。引入临界比热容分析相变区间内当量比热容,结果表明,确定的相变区间内的当量比热容大于临界比热容。改进后的T-history法可用于确定相变区间和相变焓。


Evaluating of phase change temperature range and latent heat of phase change materials based on T-history method
HE Yuxiang1, JI Zhijiang1, LU Yongping1, LIU Ruirui1, WANG Jing1, HU Qinghong2, JIN Shan2
1. State Key Laboratory of Green Building Materials, China Building Materials Academy, Beijing 100024, China;
2. Shenzhen Shenzhuang General Decoration Co., Ltd., Shenzhen 518000, China
Abstract: Phase change temperature range is the key factor in determining performance of phase change materials and also influences calculation of latent heat. The T-history method is a simple method to determine phase change temperature range and latent heat of phase change materials. In this paper, capric acid, the compound of calcium chloride hexahydrate (YP-24) and paraffin were selected as tested materials, temperature-time and enthalpy-temperature curves were obtained via T-history method and phase change temperature ranges were determined based on the first and second derivatives of temperature and tangent method, latent heat can be obtained finally through enthalpy curves. Standard deviations of the starting and ending phase change temperature of capric acid and paraffin were less than 0.5℃ and standard deviation rates of capric and paraffin latent heat were less than 10%; Standard deviations of the starting and ending crystallizing temperature of the YP-24 were 1.9℃ and 0.8℃, standard deviations of the starting and ending melting temperature of the YP-24 were less than 0.5℃, standard deviation rates of the YP-24 latent heat is less than 10%. Intruduced threshold of heat capcity, equivalent specific heat capacities on phase change temperature range of phase change materials were higher than threshold. Modified T-history method can be used to determine phase change temperature ranges and latent heat.
Keywords: energy storage performance test;phase change temperature range;latent heat;T-history method;phase change materials
2019, 45(1):47-55  收稿日期: 2018-04-26;收到修改稿日期: 2018-05-24
基金项目: 国家重点研发计划课题(2016YFC0700903);深圳市科技研发资金(JSGG20160608102846423)
作者简介: 何雨翔(1991-),男,四川绵阳市人,硕士研究生,专业方向为相变材料
参考文献
[1] MEMON S A. Phase change materials integrated in building walls:A state of the art review[J]. Renewable & Sustainable Energy Reviews, 2014, 31(31):870-906
[2] 王彦红, 张成亮, 俞会根, 等. 相变材料在动力电池热管理中的应用研究进展[J]. 功能材料, 2013, 44(22):003213-3218
[3] GUNTHER E, HIEBLER S, MEHLING H, et al. Enthalpy of phase change materials as a function of temperature:required accuracy and suitable measurement methods[J]. International Journal of Thermophysics, 2009, 30(4):1257-1269
[4] 范瑛. 调温纤维和调温非织造布的热性能研究[J]. 产业用纺织品, 2010, 28(5):12-16
[5] CASTELLON C, GUNTHER E, MEHLING H, et al. Determination of the enthalpy of PCM as a function of temperature using a heat-flux DSC-A study of different measurement procedures and their accuracy[J]. International Journal of Energy Research, 2010, 32(13):1258-1265
[6] RATHGEBER C, MIRO L, CABEZA L F, et al. Measurement of enthalpy curves of phase change materials via DSC and T-History:When are both methods needed to estimate the behaviour of the bulk material in applications?[J]. Thermochimica Acta, 2014, 596:79-88
[7] YIN Z, Yi J, Yi J. A simple method, the -history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials[J]. Measurement Science & Technology, 1999, 10(3):201-205
[8] HONG H, KIM S K, KIM Y-S. Accuracy improvement of T-history method for measuring heat of fusion of various materials[J]. International Journal of Refrigeration, 2004, 27(4):360-366
[9] PECK J H, KIM J J, KANG C, et al. A study of accurate latent heat measurement for a PCM with a low melting temperature using T-history method[J]. International Journal of Refrigeration, 2006, 29(7):1225-1232
[10] 李瑶, 钱静, 吴丽彬. 基于T-history曲线计算材料相变潜热方法的改进[J]. 包装工程, 2014(23):17-22
[11] MARIN J M, ZALBA B, CABEZA L F, et al. Determination of enthalpy-temperature curves of phase change materials with the temperature-history method:improvement to temperature dependent properties[J]. Measurement Science & Technology, 2003, 14(2):184-189
[12] LAZARO A, GUNTHER E, MEHLING H, et al. Verification of a T-history installation to measure enthalpy versus temperature curves of phase change materials[J]. Measurement Science & Technology, 2006, 17(8):2168-2174
[13] SHAO S, LI D, ZHENG Q, et al. Microencapsulated capric-stearic acid with silica shell as a novel phase change material for thermal energy storage[J]. Applied Thermal Engineering, 2014, 70(1):546-551
[14] YA Y, YAN Y, NAN Z, et al. Preparation and thermal characterization of capric-myristic-palmitic acid/expanded graphite composite as phase change material for energy storage[J]. Materials Letters, 2014, 125(24):154-157
[15] MEHLIN H, EBERT H P, SCHOSSIG P. Development of standards for materials testing and quality control of PCM[C]//Conference on Phase-Change-Materials and Slurries. 2006.
[16] 池召坤, 谭劲, 包鲁明, 等. 熔体过冷度对透辉石晶体形貌、成分及过渡层性质的影响[J]. 人工晶体学报, 2009, 38(1):88-94
[17] 卢雪梅, 赵波, 徐芳华, 等. 过冷度对硅晶体取向特征及晶粒尺寸的影响[J]. 太阳能学报, 2015, 36(5):1136-1140
[18] SANDNES B, REKSTAD J. Supercooling salt hydrates:Stored enthalpy as a function of temperature[J]. Solar Energy, 2006, 80(5):616-625
[19] HASNAIN S M. Review on sustainable thermal energy storage technologies, Part I:heat storage materials and techniques[J]. Energy Conversion & Management, 1998, 39(11):1127-1138
[20] ZEINELABDEIN R, OMER S, GAN G. Critical review of latent heat storage systems for free cooling in buildings[J]. Renewable & Sustainable Energy Reviews, 2018, 82:2843-2868