您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>超高速光学扫描测量方法的准确度验证实验

超高速光学扫描测量方法的准确度验证实验

2879    2020-02-27

免费

全文售价

作者:沈飞, 王辉, 周岚

作者单位:西安近代化学研究所, 陕西 西安 710065


关键词:转镜扫描相机;爆速;标准物质;测量不确定度


摘要:

为验证超高速扫描相机在动态条件下的测量准确度,采用具有较强代表性的扫描测量法获取TNT标准物质的爆速,并对测量的不确定度进行系统分析。结果表明:底片图像放大比的不确定度对爆速测量不确定度的影响最大,而标尺长度越小则图像放大比的不确定度将显著增加,因此,在实验过程中应尽可能地选择较长且图像较清晰的标尺;光学扫描测量法确定出TNT标准物质的爆速平均值为6.824 mm/μs,处于该标准物质的有效范围内,且标准差为0.015 mm/μs,可以反映出超高速光学扫描测量方法具有较高的准确度及较好的重复性。


Accuracy verification experiment of ultra-high speed optical scanning measurement method
SHEN Fei, WANG Hui, ZHOU Lan
Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
Abstract: In order to verify the measurement accuracy of ultra-high-speed scanning camera under dynamic conditions, the explosion velocity of TNT reference material was obtained by a representative explosion velocity scanning method, and the uncertainty of measurement was analyzed systematically. The results show that the uncertainty of image magnification ratio has the greatest influence on the measurement uncertainty of detonation velocity, and the smaller the length of scale, the greater the uncertainty of image magnification ratio. Therefore, in the process of experiment, we should choose as long as possible and the image is clearer. The average detonation velocity of TNT reference material was determined by optical scanning velocimetry to be 6.824 mm/μs, which was within the effective range of the reference material. And the standard deviation is 0.015 mm/μs, which can reflect that the ultra-high speed optical scanning measurement method has high accuracy and good repeatability.
Keywords: rotary mirror scanning camera;detonation velocity;reference material;measurement uncertainty
2020, 46(2):23-27  收稿日期: 2019-05-23;收到修改稿日期: 2019-08-10
基金项目: 国防技术基础研究项目(JSJL2016208A011)
作者简介: 沈飞(1983-),男,江苏如皋市人,副研究员,硕士,主要从事炸药爆轰性能实验及理论研究
参考文献
[1] 孙承纬, 卫玉章, 周之奎. 应用爆轰物理[M]. 北京:国防工业出版社, 2000:218-219.
[2] LAMBERT D E, STEWART D S, YOO S, et al. Experimental validation of detonation shock dynamics in condensed explosives[J]. Journal of Fluid Mechanics, 2006, 546:227-253
[3] 郭刘伟, 刘宇思, 汪斌, 等. 高温下TATB基钝感炸药爆轰波波阵面曲率效应实验研究[J]. 含能材料, 2017, 25(2):138-143
[4] ITOH S, SUZUKI O, NAGANO S, et al. Investigations on fundamental properties of underwater shock waves by high speed photography[J]. Journal of Materials Processing Technology, 1999, 85(3):226-230
[5] 张涛, 谷岩, 赵继波, 等. 新型高能钝感炸药JBO-9X在较高冲击压力下冲击起爆过程的实验研究[J]. 火炸药学报, 2016, 39(1):28-33
[6] LOTFI M, WALDEMAR A T. Detonation characteristic of new aluminized enhanced blast composites[J]. Propellants, Explosives, Pyrotechnics, 2018, 43(3):1-8
[7] LINDSAY C M, BUTLER G C, RUMCHIK C G, et al. Increasing the utility of the copper cylinder expansion test[J]. Propellants, Explosives, Pyrotechnics, 2010, 35(5):433-439
[8] GOTO D M, BECKER R, ORZECHOWSKI T J, et al. Investigation of the fracture and fragmenation of explosively driven rings and cylinders[J]. International Journal of Impact Engineering, 2008, 35(12):1547-1556
[9] 汪伟, 谭显祥. 转镜式高速扫描相机扫描速度检测装置及不确定度评定[J]. 光学与光电技术, 2008, 6(5):76-79
[10] 汪伟, 畅里华, 李剑, 等. 超高速转镜扫描相机扫描速度的校准及应用方法[J]. 光子学报, 2006, 35(7):113-116
[11] 汪伟, 谭显祥, 肖正飞, 等. 转镜式高速相机的计量技术[J]. 计量技术, 2006, 6(7):41-44
[12] 超高速转镜式扫描摄影系统检定规程:GJB 8288-2014[S]. 北京:总装备部军标出版发行部, 2014.
[13] 孙永强, 何智, 王珺. 一种高精度爆速测量方法[J]. 含能材料, 2012, 20(3):329-332
[14] 炸药试验方法:GJB 772A-1997[S]. 北京:国防科工委军标出版社, 1997.
[15] 费业泰. 误差理论与数据处理[M]. 北京:机械工业出版社, 2012:37-61.
[16] 国防科工委科技与质量司. 计量技术基础[M]. 北京:原子能出版社, 2002:39-50.