您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>U形试块残余应力超声检测及有限元分析

U形试块残余应力超声检测及有限元分析

2588    2020-02-27

免费

全文售价

作者:邓韬, 童松, 敬燕飞

作者单位:国电科学技术研究院有限公司成都分公司, 四川 成都 610000


关键词:残余应力;超声检测;有限元分析;校准


摘要:

为验证超声检测残余应力的精度与检测深度问题,该文提出并设计一种能够施加定值载荷应力的U形试块来模拟构件中的残余应力。通过残余应力超声检测系统激励5 MHz、4 MHz等其他不同频率的超声换能器,对U形试块在缺口施加拉压载荷,使试块处于闭合、张开的不同状态来模拟构件中的拉压状态,对U形试块的上表面不同位置和后侧面不同深度处的应力值进行超声残余应力无损检测。同时将其检测结果与同等条件下ABAQUS有限元仿真分析的结果进行对比,验证该系统对表面残余应力及试块内部梯度残余应力检测的准确性。另外,该试块也为残余应力超声检测系统的校准提供方法。


Investigation of residual stress in U-shaped block by using the ultrasonic stress measure and finite element method
DENG Tao, TONG Song, JING Yanfei
CHN Energy Electric Power Research Institute Co., Ltd., Chengdu Branch, Chengdu 610000, China
Abstract: For the fixed-value residual stress U-shaped test block, the residual stress ultrasonic detection system and the ultrasonic transducers of 5 MHz, 4 MHz and other different frequencies are used, respectively, for the U-shaped test block in the state where the notch is closed and opened, the upper surface is different and after non-destructive testing of stress values at different depths on the sides. At the same time, the detection results are compared with the results of ABAQUS finite element simulation analysis under the same conditions, and the accuracy of the system for surface residual stress and gradient residual stress detection is verified. In addition, the test block provides a method for calibration of the residual stress ultrasonic inspection system.
Keywords: residual stress;ultrasonic detection;finite element method;calibration
2020, 46(2):155-160  收稿日期: 2019-02-13;收到修改稿日期: 2019-04-18
基金项目:
作者简介: 邓韬(1984-),男,四川达州市人,工程师,硕士,研究方向为材料检验检测
参考文献
[1] SHOKRI V, SADEGHI S, SADEGHI M H, et al. Effect of heat input ratio on residual stress in multipass welding using finite element method and ultrasonic stress measurement[J]. Nondestruct Eval, 2015, 34:27
[2] CHAKI S, COMELOUP G, LILLAMAND I, et al. Combination of longitudinal and transverse ultrasonic waves for in situ control of the tightening of bolts[J]. Journal of Pressure Vessel Technology, 2007, 129(3):383-390
[3] YASHAR J, MEHDI A, MEHDI A N. Using finite element and ultrasonic method to evaluate welding longitudinal residual stress through the thickness in austenitic stainless steel plates[J]. Materials and Design,, 2013, 45:628-642
[4] ROSSINI N S, DASSISTI M, BEN K Y. Methods of measuring residual stresses in components[J]. Materials and Design, 2012(35):572-588
[5] 马子奇. 基于LCR波声弹性效应的平面应力测量理论和方法[D]. 哈尔滨:哈尔滨工业大学, 2014.
[6] 丁杰雄, 张永生, 尹隆辉. LCR波应力检测中互相关时延估计的误差分析[J]. 压电与声波, 2013, 35(1):24-27
[7] 徐春广. 残余应力的超声波检测与校准[A]. 中国电子学会电子机械工程分会、中国电子学会微波分会. 2014年电子机械与微波结构工艺学术会议论文集[C]. 中国电子学会电子机械工程分会、中国电子学会微波分会:中国电子学会电子机械工程分会, 2014:12.
[8] YING Z D, GAO L Q, FAN Q F. Experiment elimination plan of residual stress on bogie frame welding joint with ultrasonic impact technology[J]. Urban Mass Transit, 2016(01):44-46+51
[9] TATSUO T, YUKIO I. Acoustical birefringence of ultrasonic waves in deformed isotropic elastic materials[J]. International Journal of Solids and Structures, 1968, 4:383-389
[10] PAO Y H, SACHSE W. Acoustoelasticity and ultrasonic measurement of residual stresses[J]. Physical Acoustics, 1984, 17:62-140
[11] YU Y C, YUAN K ZOU W. Dynamic model of all-wheel-drive mobile robot climbing over obstacles and analysis on its influential factors[J]. Robot, 2008, 30(1):1-6
[12] 徐春广, 宋文涛, 潘勤学, 等. 残余应力的超声检测方法[J]. 无损检测, 2014, 36(7):25-31