您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>微型热导检测器的研究进展

微型热导检测器的研究进展

3031    2020-08-19

免费

全文售价

作者:张敏刚1, 胡君杰1, 熊可1, 潘义2, 王少楠3, 范挺4, 周理5,6, 谷雨1, 周玉龙1, 许向东1

作者单位:1. 电子科技大学光电科学与工程学院 电子薄膜与集成器件国家重点实验室,四川 成都 610054;
2. 中国测试技术研究院,四川 成都 610021;
3. 西南化工研究设计院有限公司,四川 成都 610225;
4. 中国科学院成都有机化学研究所,四川 成都 610041;
5. 中国石油西南油气田分公司天然气研究院,四川 成都 610213;
6. 中国石油天然气质量控制和能量计量重点实验室,四川 成都 610213


关键词:微型热导检测器;热导池;灵敏度;综述


摘要:

热导检测器是气相色谱仪的关键部件,主要用于气体成分和浓度的检测。与传统热导检测器相比较,微型热导检测器(μTCD)具有质量轻、体积小、灵敏度高等优点,能够集成到便携式气相色谱仪中,符合当前气相色谱仪微型化的发展趋势。该文系统概括μTCD的研究理论,从优化μTCD性能的角度,详细比较4种典型的μTCD的结构及其制备方法,并且基于μTCD热导池的封装技术,对其发展趋势进行展望。分析结果表明,当μTCD的热导池热丝支撑梁采用Si/SiNx复合结构时,输出信号可靠,检测灵敏度高。另外,与静电键合技术相比较,新型低温封装技术能够在室温条件下进行,更有利于检测到稳定的输出信号。


Research progress of micro-thermal conductivity detectors
ZHANG Mingang1, HU Junjie1, XIONG Ke1, PAN Yi2, WANG Shaonan3, FAN Ting4, ZHOU Li5,6, GU Yu1, ZHOU Yulong1, XU Xiangdong1
1. State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Photoelectric Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China;
2. National Institute of Measurement and Testing Technology, Chengdu 610021, China;
3. Southwest Research and Design Institute of Chemical Industry Co., Ltd., Chengdu 610225, China;
4. Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China;
5. Research Institute of Natural Gas Technology of PetroChina Southwest Oil and Gasfield Company, Chengdu 610213, China;
6. Key Laboratory of Natural Gas Quality Control and Energy Measurement, CNPC, Chengdu 610213, China
Abstract: Micro-thermal conductivity detectors (μTCDs) which are mainly used to measure the gas compositions and concentrations are the key components of gas chromatographic systems. Compared with the traditional thermal conductivity detectors, μTCDs exhibit the advantages of lighter weight, smaller volume, and higher sensitivity, which can be integrated into a portable instrument, such as a miniaturized gas chromatography. Recent results about μTCDs are reviewed in this paper. Firstly, the theoretical bases of the μTCDs are presented. Secondly, the structures and prepartion methods of four kinds of μTCDs are summarized. Particularly, the output signal stability and detection sensitivity of the μTCDs are significantly improved when thermal sensitive materials support beams are fabricated by Si/SiNx films. In addition, the bonding techniques for the top layer of the μTCDs are described. The analysis results indicate that the novel polydimethylsiloxane films instead of glasses were used to seal μTCDs at the room temperature with the good sealing effect. Finally, the trends in the development of μTCDs are discussed.
Keywords: micro-thermal conductivity detectors;thermal conductivity cells;sensitivity;review
2020, 46(8):1-8  收稿日期: 2019-12-11;收到修改稿日期: 2020-03-17
基金项目: 国家自然科学基金项目(61377063,61421002);四川省科技重大专项(2018TZDZX0008)
作者简介: 张敏刚(1995-),男,甘肃平凉市人,博士研究生,主要从事光电传感器的应用研究工作
参考文献
[1] LISEC J, SCHAUER N, KOPKA J, et al. Gas chromatography mass spectrometry-based metabolite profiling in plants[J]. Nature Protocols, 2006, 1(1): 387-396
[2] DUNN W B, BROADHURST D, BEGLEY P, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry[J]. Nature Protocols, 2011, 6(7): 1060-1083
[3] DALLUGE J, BEENS J, BRINKMAN U A T. Comprehensive two-dimensional gas chromatography: a powerful and versatile analytical tool[J]. Journal of Chromatography A, 2003, 1000(1): 69-108
[4] KOLESAR E S, RESTON R R. Review and summary of a silicon micromachined gas chromatography system[J]. IEEE Transactions on Components Packaging & Manufacturing Technology Part B, 1998, 21(4): 324-328
[5] 傅若农. 近两年国内气相色谱的应用进展[J]. 分析试验室, 2005, 5(24): 79-92
[6] 景士廉, 张云, 范宇星. 各种便携式气相色谱仪特点[J]. 岩矿测试, 2006, 25(4): 348-354
[7] CHEN K, WU Y E. Thermal analysis and simulation of the microchannel flow in miniature thermal conductivity detectors[J]. Sensors & Actuators A Physcial, 2000, 79(3): 211-218
[8] BERNARDI C, CHIESA L M, SONCIN S, et al. Determination of carbon monoxide in tuna by gas chromatography with micro-thermal conductivity detector[J]. Journal of Chromatographic Science, 2008, 46(5): 392-394
[9] WU Y E, CHEN K, CHEN C W, et al. Fabrication and characterization of thermal conductivity detectors (TCD) of different flow channel and heater designs[J]. Sensors & Actuators A Physcial, 2002, 100(1): 37-45
[10] 李学东, 余志伟, 杨明忠. 基于MEMS技术的微型传感器[J]. 仪表技术与传感器, 2005(9): 4-5
[11] 毛秀芬, 靳斌, 苏垒. 供气相色谱仪使用的热导检测器设计与实现[J]. 色谱, 2011, 29(8): 781-785
[12] 罗凡, 冯飞, 赵斌, 等. 基于微机电系统的微型气相色谱柱研究进展[J]. 色谱, 2018, 36(8): 707-715
[13] 冉莹玲, 靳斌. 微型热导检测器的设计与结构研究[J]. 电子元件与材料, 2015, 34(10): 64-67
[14] 黄为勇, 任子晖, 童敏明. 影响热导传感器气体检测性能的原因分析[J]. 计算机测量与控制, 2004, 12(10): 1005-1007
[15] 游文斌, 冯飞, 俞正寅, 等. 微型热导检测器温控模块研究[J]. 传感器与微系统, 2017, 36(2): 11-17
[16] 黄为勇, 童敏明, 任子晖. 采用热导检测器检测气体浓度的新方法[J]. 传感技术学报, 2006, 19(4): 973
[17] 苏垒. 气相色谱仪热导检测器的设计与研究[D]. 成都: 西华大学, 2012.
[18] 张天龙. 科创高灵敏度微型热导池检测器(μTCD)[J]. 低温与特气, 2010, 28(3): 44-46
[19] SORGE S, PECHSTEIN T. Fully integrated thermal conductivity sensor for gas chromatography without dead volume[J]. Sensors & Actuators A, 1997, 63(3): 191-195
[20] UDINA S, CARMONA M, CARLES G, et al. A micromachined thermoelectric sensor for natural gas analysis: thermal model and experimental results[J]. Sensors & Actuators B Chemical, 2008, 134(2): 551-558
[21] STRUK D, SHIRKE A, MAHDAVIFAR A, et al. Investigating time-resolved response of micro thermal conductivity sensor under various modes of operation[J]. Sensors & Actuators B Chemical, 2017, 254(2018): 771-777
[22] AGAH M, POTKAY J A, LAMBERTUS G. High-speed mems-based gas chromatography[J]. Journal of Microelectromechanical Systems, 2005, 14(5): 1039-1050
[23] NARAYANAN S, ALFEELI B, AGAH M. A micro gas chromatography chip with an embedded non-cascaded thermal conductivity detector[J]. Procedia Engineering, 2010, 5(6): 29-32
[24] 李立, 王鹏, 廖琳芸, 等. 基于虚拟仪器的多参量传感器信号采集系统的设计[J]. 计算机测量与控制, 2001, 9(6): 67-68
[25] 宋同根, 李文学. 基于虚拟仪器的场强系统设计与实现[J]. 计算机测量与控制, 2002, 10(2): 90-93
[26] 刘文生, 李锦林. 取样技术原理与应用[M]. 北京: 科学出版社, 1981.
[27] CRUZ D, CHANG J P, SHOWALTER S, et al. Microfabricated thermal conductivity detector for the micro-ChemLabTM[J]. Sensors & Actuators B Chemical, 2007, 121(2): 414-422
[28] 鲍春, 郭志俊, 赵国鑫, 等. 一种微型热导检测器中的热导池: 201110449783.3[P]. 2011.
[29] 赵国宏, 周志康, 丁素君. 热导检测器: 201120067757.4[P]. 2011.
[30] 尹立明. 提高气相色谱仪分析性能探讨[J]. 特钢技术, 2010, 16(1): 55-57
[31] 苏垒, 靳斌, 毛秀芬, 等. 热导检测器精密恒流源的设计与实现[J]. 微型机与应用, 2011, 30(14): 16-18
[32] 冉莹玲, 何芳. 提高热导检测器灵敏度的设计与研究[J]. 传感器世界, 2015, 21(1): 20-23
[33] 何秉元. 钨化学气相沉积工艺方块电阻均匀性的研究[J]. 中国集成电路, 2014, 23(11): 54-57
[34] 汪洋, 王忠兵, 李凤霞, 等. Zn掺杂对Ni-Mn-Cu-O系NTC热敏电阻的影响[J]. 电子元件与材料, 2014, 33(12): 17-20
[35] 程绪信, 赵肇雄, 周东祥, 等. 叠层片式PTC热敏陶瓷与基体研究进展[J]. 电子元件与材料, 2014, 33(7): 4-7
[36] FENG F, TIAN B, HOU L, et al. High sensitive micro thermal conductivity detector with sandwich structure[C]//The 17th International Conference on Solid-State Sensors, Actuators and Microsystems. Taiwan, 2017.
[37] SUN J H, CUI D, XING C, et al. Design, modeling, microfabrication and characterization of novel micro thermal conductivity detector[J]. Sensors & Actuators B Chemical, 2011, 160(1): 936-941
[38] PULAVARTHY R, WANG B, HATTAR K, et al. Thermal conductivity of self-ion irradiated nanocrystalline zirconium thin films[J]. Thin Solid Films, 2017, 638: 17-21
[39] GRAAF G D, PROUZA A A, GHADERI M, et al. Micro thermal conductivity detector with flow compensation using a dual mems device[J]. Sensors & Actuators A Physical, 2016, 249: 186-198
[40] TERRY S C, JERMAN J H, ANGELL J B. A gas chromatographic air analyzer fabricated on a silicon wafer[J]. IEEE Transactions on Electron Devices, 2005, 26(12): 1880-1886
[41] SUN J, CUI D, LI Y, et al. A high resolution mems based gas chromatography column for the analysis of benzene and toluene gaseous mixtures[J]. Sensors & Actuators B Chemical, 2009, 141(2): 431-435
[42] SERRANO G, REIDY S M, ZELLERS E T. Assessing the reliability of wall-coated microfabricated gas chromatographic separation columns[J]. Sensors & Actuators B Chemical, 2009, 141(1): 217-226
[43] LEGENDRE O, RUELLAN J, GELY M, et al. COMS compatible nanoscale thermal conductivity detector for gas sensing applications[J]. Sensors & Actuators A Physical, 2017, 261: 9-13
[44] KAANTA B C, CHEN H, LAMBERTUS G, et al. High sensitivity micro-thermal conductivity detector for gas chromatography[C]//The 22nd International Conference on Micro Electro Mechanical Systems. Sorrento, 2009.
[45] KAANTA B C, CHEN H, ZHANG X. Effect of forced convection on thermal distribution in micro thermal conductivity detectors[J]. Journal of Micromechanics & Microengineering, 2011, 20(5): 55016-55016
[46] SUN J, CUI D, ZHANG L, et al. Fabrication and characterization of a double-heater based mems thermal flow sensor[J]. Sensors & Actuators A Physical, 2013, 193: 25-29
[47] 崔大付, 孙建海, 张璐璐, 等. 一种微型热导检测器集成芯片及其制造方法: 201110082184.7[P]. 2011.
[48] WALLIS G, POMERANTZ D I. Field assisted glass-metal sealing[J]. Journal of Applied Physics, 1969, 40(10): 3946