您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>不同频率轨道激励下列车横向半主动控制研究

不同频率轨道激励下列车横向半主动控制研究

1411    2020-08-19

免费

全文售价

作者:王靖铭1,2, 宁静1, 赵飞1, 陈春俊1

作者单位:1. 西南交通大学机械工程学院,四川 成都 610031;
2. 西南交通大学 轨道交通运维技术与装备 四川省重点实验室,四川 成都 610031


关键词:高速列车;轨道激励;天棚阻尼控制;横向平稳性


摘要:

轨道不平顺激扰是影响高速列车横向振动最常见和最主要的因素,而目前对不同频率轨道激励下车辆横向振动以及其半主动悬挂控制算法实现的研究甚少。基于此,建立高速列车17自由度车辆横向振动仿真模型,运用经验模态分解基于频域采样的三角级数法模拟的轨道谱信号,并重构得到不同频率的轨道激励,对不同频率轨道激励下车辆横向振动和横向半主动悬挂天棚阻尼控制算法进行研究。研究结果表明,影响车辆横向振动的轨道谱信号主要集中在0~10 Hz;在270 km/h的运行速度下,当天棚阻尼控制算法的比例系数k取7.5~8.5时,车辆横向平稳性得到较大改善,可为轨道谱优化与改进以及天棚阻尼控制算法实现提供理论指导。


Research on train's lateral semi-active control under different frequency track excitations
WANG Jingming1,2, NING Jing1, ZHAO Fei1, CHEN Chunjun1
1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China;
2. Technology and Equipment of Rail Transit Operation and Maintenance Key Laboratory of Sichuan Province, Southwest Jiaotong University, Chengdu 610031, China
Abstract: Track irregularity is the most common and important factor affecting the lateral vibration of the high-speed trains. At present, vehicle lateral vibration and semi-active suspension control algorithm under different frequency track excitations are rarely researched. Based on this, a simulation based on a 17-degree-freedom vehicle lateral vibration model is done, using EMD to decompose the track spectrum signals simulated by the trigonometric series method based on frequency domain sampling, and reconstructed to obtain track excitation at different frequencies. Under different frequency track excitations vehicle lateral vibration and lateral semi-active suspension skyhook damper control algorithm are studied. The results show that track spectrum signal influenced vehicle lateral vibration mainly concentrates in 0-10 Hz; at the speed of 270 km/h, when the proportional coefficient k about skyhook control algorithm is between 7.5-8.5, the vehicle lateral stability is greatly improved, which can provide theoretical guidance for the optimization and improvement of track spectrum and realization about skyhook control algorithm.
Keywords: high-speed train;track excitation;skyhook damper control;lateral stability
2020, 46(8):116-120  收稿日期: 2020-01-06;收到修改稿日期: 2020-03-07
基金项目: 国家自然科学基金项目(51975486,51975487)
作者简介: 王靖铭(1994-),男,四川宜宾市人,硕士研究生,专业方向为智能化状态检测与故障诊断等
参考文献
[1] 马思群, 王猛, 王晓杰, 等. 高速列车平稳性与乘坐舒适度测试及评价[J]. 大连交通大学学报, 2015, 36(S1): 66-68
[2] 成金娜. 高速车辆天棚阻尼悬挂动力学性能分析[J]. 齐齐哈尔大学学报(自然科学版), 2018, 34(3): 46-50
[3] 孙宇, 陈春俊, 何发胜, 等. 高速列车一系横向半主动悬挂控制研究[J]. 机械设计与制造, 2015(7): 1-3,7
[4] SAVARESI S M, SPELTA C. Mixed sky-hook and ADD: approaching the filtering limits of a semi-active suspension[J]. Journal of Dynamic Systems Measurement and Control, 2007, 129(4): 382-392
[5] GARDONIO P, GAVAGNI M, BAGOLINI A. Seismic velocity sensor with an internal sky-hook damping feedback loop[J]. IEEE Sensors Journal, 2008, 8(11): 1776-1784
[6] 翟婉明. 车辆-轨道耦合动力学[M]. 2版. 北京: 中国铁道出版社, 2001: 212-216.
[7] 陈果, 翟婉明, 左洪福. 轨道随机不平顺对车辆/轨道系统横向振动的影响[J]. 南京航空航天大学学报, 2001, 33(3): 227-232
[8] 李晓静. 轨道不平顺激扰下高速列车振动特性分析[D]. 兰州: 兰州交通大学, 2016.
[9] KOUROUSSIS G, CONNOLLY D P, ALEXANDROU G, et al. The effect of railway local irregularities on ground vibration[J]. Transportation Research, 2015, 39: 17-30
[10] 陈春俊. 高速列车主动与半主动控制[M]. 成都: 西南交通大学出版社, 2015.
[11] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings A, 1998, 454(1971): 903-995
[12] 陈春俊, 李华超. 频域采样三角级数法模拟轨道不平顺信号[J]. 铁道学报, 2006, 28(3): 38-42
[13] 陈春俊, 何洪阳, 闫中奎. 气动载荷作用下高速列车横向振动虚拟惯性阻尼半主动控制研究[J]. 振动与冲击, 2016, 35(20): 60-64
[14] 机车车辆动力学性能评定及试验鉴定规范: GB/T 5599—2019[S]. 北京: 中国质检出版社, 2019.
[15] KARNOPP D, CROSBY M J, HARWOOD R A. Vibration control using semi-active force generators[J]. Journal of Engineering for Industry, 1974, 96(2): 619-626