您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>五自由度机器人运动控制与空间位姿仿真系统

五自由度机器人运动控制与空间位姿仿真系统

1095    2021-11-23

免费

全文售价

作者:庄衡衡1,2, 丁飞1,2, 章华涛3,4, 张海涛1,2, 暴建民1,2

作者单位:1. 南京邮电大学 江苏省宽带无线通信和物联网重点实验室,江苏 南京 210003;
2. 南京邮电大学物联网学院,江苏 南京 210003;
3. 中国科学院国家天文台南京天文光学技术研究所,江苏 南京 210042;
4. 中国科学院天文光学技术重点实验室,江苏 南京 210042


关键词:五自由度机器人;运动控制;正向运动;逆向运动;空间位姿


摘要:

多自由度机器人在高端制造、空间遥操作和智能自主系统等领域具有极其重要的作用,其运动学与空间位姿研究可用于运动控制、轨迹规划和工作空间分析等。该文设计并实现一种五自由度机器人运动控制与空间位姿仿真系统,建立该机器人的结构模型,并提出正向运动学和逆向速度运动学解法;通过对多电机驱动单元的集成开发,实现XYZ轴向及两个转向控制;选取一个马鞍面定义为该机器人空间观测作业任务,同步执行五自由度运动控制和空间位姿仿真的协同分析。测试结果表明,目标位姿与仿真位姿具有一致性,验证所提出运动学模型与解法的有效性。研究结果可用于评估多自由度机器人的可达工作空间,为其结构设计与控制优化提供理论和方法支撑。


Motion control and spatial pose simulation system of 5-DOF robot
ZHUANG Hengheng1,2, DING Fei1,2, ZHANG Huatao3,4, ZHANG Haitao1,2, BAO Jianmin1,2
1. Jiangsu Key Laboratory of Broadband Wireless Communication and Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2. School of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
3. Nanjing Institute of Astronomical Optics & Technology, National Astronomical Observatories, Chinese Academy of Sciences, Nanjing 210042, China;
4. CAS Key Laboratory of Astronomical Optics & Technology, Nanjing 210042, China
Abstract: Multi-DOF (degree of freedom) robot plays an extremely important role in the fields of high-end manufacturing, spatial teleoperation and intelligent autonomous system. Its kinematics and spatial pose research can be used for motion control, trajectory planning and workspace analysis. In this paper, a 5-DOF robot motion control and space pose simulation system is designed and implemented, the structural model of the robot is established, and the forward kinematics and reverse velocity kinematics are proposed. Through the integrated development of multi-motor drive units, the X, Y and Z axes and two steering controls are realized. A saddle surface is defined as the space observation task of the robot, and the cooperative analysis of 5-DOF motion control and space pose simulation is performed synchronously. The test results show that the target pose is consistent with the simulation pose, and verify the correctness and effectiveness of the proposed kinematic model and solution. The research results can be used to evaluate the reachable workspace of the multi-DOF robot and provide a theoretical and methodological support for its structural design and control optimization.
Keywords: 5-DOF robot;motion control;positive movement;reverse movement;spatial pose
2021, 47(11):14-20  收稿日期: 2021-07-08;收到修改稿日期: 2021-08-19
基金项目: 国家自然科学基金(11973068);江苏省“六大人才高峰”高层次人才资助项目(DZXX-008);State Key Laboratory of Analytical Chemistry for Life Science (SKLACLS2015);NUPTSF(NY220028);江苏省高等教育教改研究课题(2021JSJG710);南京邮电大学教学改革研究重点项目(JG01621JX10)
作者简介: 庄衡衡(1998-),男,江苏徐州市人,硕士研究生,专业方向为物联网与信息系统、终端设计与边缘智能技术
参考文献
[1] 谭建荣, 刘达新, 刘振宇, 等. 从数字制造到智能制造的关键技术途径研究[J]. 中国工程科学, 2017, 19(3): 39-44
[2] 董成举, 刘文威, 李小兵, 等. 六轴工业机器人工作空间分析及区域性能研究[J]. 中国测试, 2020, 46(5): 154-160
[3] FU J, GAO F, CHEN W, et al. Kinematic accuracy research of a novel six-degree-of-freedom parallel robot with three legs[J]. Mechanism and Machine Theory, 2016, 102: 86-102
[4] 曲道奎. 机遇与挑战——中国机器人产业发展的深度思考[J]. 科技导报, 2015, 33(23): 31-34
[5] CHEN Y, MA Y, HAN Y. The finite element analysis of longmen type frame on large thickness flame cutting machine[J]. Applied Mechanics and Materials, 2013, 2205: 253-256
[6] 王琳玮, 邵星灵, 杨卫. 基于惯性传感器的球形机器人位姿控制系统及实验研究[J]. 中国测试, 2020, 46(3): 123-127
[7] 郭万金, 李瑞峰, 曹雏清. 五自由度机器人逆运动学解法与工作空间分析[J]. 华中科技大学学报(自然科学版), 2015, 43(S1): 14-18
[8] 张道义, 伞红军, 陈久朋, 等. 5-DOF混联雕刻机速度运动学分析及仿真[J]. 电子科技, 2020, 33(4): 42-49
[9] CAO F, LIU J, ZHOU C, et al. A Novel 5-DOF welding robot based on SCARA[C]//2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA). IEEE, 2015: 2016-2019.
[10] LEE J W, PARK G T, SHIN J S, et al. Industrial robot calibration method using denavit—Hatenberg parameters[C]//2017 17th International Conference on Control, Automation and Systems (ICCAS). IEEE, 2017: 1834-1837.
[11] ZHENG K, CUI P, MAO H. Basic pose control algorithm of 5-dof hybrid robotic arm suitable for table tennis robot[C]//Proceedings of the 29th Chinese Control Conference. IEEE, 2010: 3728-3733.
[12] 汤少敏, 刘桂雄, 林志宇, 等. 工业机器人伺服系统测试技术发展与趋势[J]. 中国测试, 2019, 45(8): 1-7
[13] 高云峰, 吕明睿, 周伦, 等. 一种五自由度混联机器人运动学分析[J]. 哈尔滨工业大学学报, 2014, 46(7): 1-7
[14] HERNANDEZ-BARRAGAN J, LOPEZ-FRANCO C, ARANA-DANIEL N, et al. A modified firefly algorithm for the inverse kinematics solutions of robotic manipulators[J]. Integrated Computer–Aided Engineering, 2021, 28(3): 257-275
[15] 张华文. 六自由度串联机器人运动学逆解算法研究[J]. 国外电子测量技术, 2021, 40(4): 53-57
[16] 张东胜, 许允斗, 侯照伟, 等. 五自由度混联机器人优化设计与运动学分析[J]. 农业工程学报, 2016, 32(24): 69-76
[17] 陈刚, 金波, 陈鹰. 基于速度逆运动学的六足步行机器人位姿闭环控制[J]. 农业机械学报, 2014, 45(5): 265-270+264
[18] SPONG M W, HUTCHINSON S, VIDYASAGAR M. Robot modeling and control[J]. Industrial Robot: An International Journal, 2006, 33(5): 403-403