您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>机器人用滚子包络精密减速器的仿真测试研究

机器人用滚子包络精密减速器的仿真测试研究

1221    2021-11-23

免费

全文售价

作者:洪雷1, 王世松2, 李凡2, 邓星桥2

作者单位:1. 二重(德阳)重型装备有限公司,四川 德阳 618000;
2. 成都理工大学核技术与自动化工程学院,四川 成都 610059


关键词:工业机器人;滚子包络精密减速器;仿真测试;多体动力学


摘要:

为有效分析滚子包络精密减速器应用于工业机器人中的综合性能,设计一款以滚子包络精密减速器为核心部件的工业机器人,并提出利用多体动力学的仿真方法对其性能进行分析测试。首先,利用基于多体动力学理论的软件Recurdyn建立仿真模型,其次,根据实际情况设定运动副与接触关系,并利用该仿真模型分别测试工业机器人在不同负载、不同运行速度下滚子包络精密减速器的传动转角误差以及机器人末端的执行误差,最后,通过试验证明所建立仿真模型的有效性。研究结果表明,在不同负载与运行速度下,减速器与机器人执行末端均能保持较小的误差,由此说明滚子包络精密减速器应用于工业机器人的可行性。


Research on simulation test of the roller enveloping hourglass reducer used in the robot
HONG Lei1, WANG Shisong2, LI Fan2, DENG Xingqiao2
1. Erzhong (Deyang) Heavy Equipment Co., Ltd., Deyang 618000, China;
2. College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, China
Abstract: To effectively analyze the comprehensive performance of the roller enveloping hourglass reducer (REHR) used in industrial robots, an industrial robot with the REHR as the core component was designed. In addition, a simulation method using multi-body dynamics (MBD) was proposed to analyze and test its performance. Firstly, based on the theory of MBD, the simulation model was established by Recurdyn. Secondly, according to the actual situation to set the joints and contact relationship, and the simulation model is employed to test the transmission error and error of the robot execution end under different loads and operating speeds. Finally, the validity of the simulation model is proved by experiments. The research results prove that the reducer and the robot execution end can maintain a small error under different loads and operating speeds, which shows the feasibility of the REHR applied to industrial robots.
Keywords: industrial robot;roller enveloping hourglass reducer;simulation test;multi-body dynamics
2021, 47(11):69-74  收稿日期: 2021-09-13;收到修改稿日期: 2021-10-25
基金项目: 国家自然科学基金资助项目(51875479)
作者简介: 洪雷(1983-),男,山西长治市人,高级工程师,硕士,研究方向为机械传动
参考文献
[1] 王田苗, 陶永. 我国工业机器人技术现状与产业化发展战略[J]. 机械工程学报, 2014, 50(9): 1-13
[2] 董成举, 刘文威, 李小兵, 等. 六轴工业机器人工作空间分析及区域性能研究[J]. 中国测试, 2020, 46(5): 154-160
[3] JEON H S, OH S H. A study on stress and vibration analysis of a steel and hybrid flexspline for harmonic drive[J]. Composite Structures, 1999, 47(1-4): 827-833
[4] YANG Y H, ZHOU G C, CHANG L, et al. A modelling approach for kinematic equivalent mechanism and rotational transmission error of RV reducer[J]. Mechanism and Machine Theory, 2021, 163: 104384
[5] PHAM A D, AHN H J. High precision reducers for industrial robots driving 4th industrial revolution: state of arts, analysis, design, performance evaluation and perspective[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2018, 5(4): 519-533
[6] 赵海鸣, 王猛, 张林林, 等. RV减速器静态回差分析及误差分配研究[J]. 天津大学学报(自然科学与工程技术版), 2016, 49(2): 164-170
[7] 吴上生, 喻钟鸣. 谐波减速器柔轮冷滚工艺及残余应力数值模拟[J]. 华南理工大学学报(自然科学版), 2017, 45(2): 52-58
[8] 石照耀, 徐航, 韩方旭, 等. 精密减速器回差测量的现状与趋势[J]. 光学精密工程, 2018, 26(9): 2150-2158
[9] DENG X Q, WANG J G, HORSTEMEYER M F, et al. Parametric study of meshing characteristics with respect to different meshing rollers of the antibacklash double-roller enveloping worm gear[J]. Journal of Mechanical Design, 2012, 134(8): 081004
[10] DENG X Q, WANG J, WANG S K, et al. Investigation on the backlash of roller enveloping hourglass worm gear: theoretical analysis and experiment[J]. Journal of Mechanical Design, 2019, 141(5): 053302
[11] DENG X Q, WANG J, WANG S K, et al. An optimal process of machining complex surfaces of anti-backlash roller enveloping hourglass worms[J]. Journal of Manufacturing Processes, 2020, 49: 472-480
[12] WANG S S, WANG S K, WANG J, et al. Temperature field simulation and experimental study of anti-backlash single-roller enveloping hourglass worm gear[J]. Chinese Journal of Mechanical Engineering, 2020, 33(1): 59
[13] DENG X Q, WANG S S, HAMMI Y, et al. A combined experimental and computational study of lubrication mechanism of high precision reducer adopting a worm gear drive with complicated space surface contact[J]. Tribology International, 2020, 146: 106261
[14] 刘义. RecurDyn多体动力学仿真基础应用与提高[M]. 北京: 电子工业出版社, 2013.
[15] GUMMER A, SAUER B. Modeling planar slider-crank mechanisms with clearance joints in RecurDyn[J]. Multibody System Dynamics, 2014, 31(2): 127-145