您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于厨余垃圾发酵沼渣热解过程模拟的生命周期评价研究

基于厨余垃圾发酵沼渣热解过程模拟的生命周期评价研究

1511    2022-10-26

免费

全文售价

作者:詹梨苹1, 赵锐1, 祝仟1, 景凌云1, 蒋启帆1, 杨天学2

作者单位:1. 西南交通大学地球科学与环境工程学院,四川 成都 611756;
2. 中国环境科学研究院固废分质利用与污染控制研究室,北京 100012


关键词:沼渣;热解;过程模拟;Aspen Plus;生命周期评价


摘要:

该研究以城市厨余垃圾厌氧发酵沼渣为研究对象,利用Aspen Plus软件建立沼渣热解的过程模型,探究热解温度和气氛对沼渣热解产物的影响。在此基础上,利用生命周期评价方法融合过程模拟结果,对沼渣热解的环境影响和成本效益开展量化评价,以期为沼渣热解工艺优化提供科学依据。结果表明:沼渣热解生物炭产率模拟值与实验值的相对误差为10.05%;在350 ℃至500 ℃范围内,生物炭产率随温度升高逐渐降低;在N2气氛中通入CO2气体会降低生物炭产率。沼渣热解对全球变暖、环境酸化和富营养化的环境影响潜值分别为1.810×10–2、1.520×10–2和6.100×10–4。沼渣热解的生命周期成本效益为–98元/t,说明其技术经济效益水平相对较低。


Life cycle assessment based on pyrolysis process simulation of food waste fermentation residue
ZHAN Liping1, ZHAO Rui1, ZHU Qian1, JING Lingyun1, JIANG Qifan1, YANG Tianxue2
1. Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China;
2. Research Laboratory of Solid Waste Utilization and Pollution Control, Chinese Academy of Environmental Sciences, Beijing 100012, China
Abstract: This study develops a process simulation model of anaerobic fermentation residue pyrolysis by Aspen Plus software, to investigate the impact of pyrolysis temperature and injected gas on the product of pyrolysis. On such basis, the process simulation results are embedded into a life cycle assessment to quantify the environmental impact of the fermentation residue pyrolysis, as well as to evaluate the associated cost-benefit performance, thus providing insight into the optimization of the pyrolysis process. The results show that the relative error between the simulation value and the experimental value regarding the biochar production is 10.05%. In the range of 350 ℃- 500 ℃, the biochar production gradually decreases with the increase of temperature, whilst the injection of carbon dioxide to replace nitrogen reduces the biochar production. The pyrolysis of fermentation residue has the greatest environmental impact on global warming through the life cycle assessment, followed by the impact on environmental acidification and eutrophication. The values corresponding to their potential environmental impact are 1.810×10–2, 1.520×10–2 and 6.100×10–4, respectively. The cost benefit related to the pyrolysis of fermentation residue is –98 yuan/t, indicating that its technical and economic benefits are at a low level.
Keywords: biogas residue;pyrolysis;processes simulation;Aspen Plus;life cycle assessment
2022, 48(10):1-7,15  收稿日期: 2022-06-22;收到修改稿日期: 2022-09-07
基金项目: 国家重点研发计划项目 (2019YFC1905600);四川省青年科技创新团队(2022JDTD0005);四川省区域合作项目(2022YFQ0040);四川循环经济研究中心课题资助 (XHJJ-2002,XHJJ-2005);中央高校基本科研业务费专项资金 (2682021CX069,2682021ZTPY088)
作者简介: 詹梨苹(1995-),女,四川宜宾市人,博士研究生,专业方向为固体废物管理与处置
参考文献
[1] ZHENG Y H, WEI J G, LI J, et al. Anaerobic fermentation technology increases biomass energy use efficiency in crop residue utilization and biogas production[J]. Renewable and Sustainable Energy Reviews, 2012, 16(7): 4588-4596
[2] 杜婷婷, 云斯宁, 朱江, 等. 生物质废弃物厌氧发酵的研究进展[J]. 中国沼气, 2016, 34(2): 46-52
[3] ZHANG M Q, SHI A P, AJMAL M, et al. Comprehensive review on agricultural waste utilization and high-temperature fermentation and composting[J/OL]. Biomass Conversion and Biorefinery: 1-24. (2021-03-16). https://doi.org/10.1007/s133 99-021-01438-5.
[4] 王富全, 孙家宾, 赵永康, 等. 沼肥还田对小麦和油菜产量、品质及土壤改良的影响[J]. 中国沼气, 2015, 33(6): 98-101
[5] 许文江, 章明清, 洪翠云, 等. 城市沼渣堆肥工艺及其施肥技术的优化[J]. 华侨大学学报(自然科学版), 2016, 37(3): 325-329
[6] 王琬丽, 孙锴, 黄群星, 等. 无机灰分对餐厨沼渣中有机质热解特性的影响[J]. 浙江大学学报(工学版), 2021, 55(9): 1652-1659
[7] PAN J, GAO B, WANG S, et al. Waste-to-resources: green preparation of magnetic biogas residues-based biochar for effective heavy metal removals[J]. Science of the Total Environment, 2020, 737: 140283
[8] LIU Y, YANG X, ZHANG J, et al. Process simulation of preparing biochar by biomass pyrolysis via Aspen Plus and its economic evaluation[J]. Waste and Biomass Valorization, 2022, 13: 2609-2622
[9] 张梦轩, 刘洪辰, 王敏, 等. 化工过程的智能混合建模方法及应用[J]. 化工进展, 2021, 40(4): 1765-1776
[10] 赵锐, 赵丽萍, 陈静芳, 等. 基于BP神经网络的垃圾渗滤液输运管道结垢趋势预测[J]. 中国测试, 2022, 48(7): 1-7
[11] ROSHA P, KUMAR S, IBRAHIM H. Sensitivity analysis of biomass pyrolysis for renewable fuel production using Aspen Plus[J]. Energy, 2022, 247: 123545
[12] 范洪刚, 袁浩然, 林镇荣, 等. 可燃固体废弃物热解气化技术及工程化模拟研究进展[J]. 新能源进展, 2017, 5(3): 204-211
[13] KABIR M J, CHOWDHURY A A, RASUL M G. Pyrolysis of municipal green waste: a modelling, simulation and experimental analysis[J]. Energies, 2015, 8(8): 7522-7541
[14] ADENIYI A G, IGHALO J O. Aspen Plus predictive simulation of soft and hard wood pyrolysis for bio-energy recovery[J]. International Journal of Environment and Waste Management, 2020, 26(2): 234-244
[15] ADENIYI A G, IGHALO J O, AMOSA M K. Modelling and simulation of banana (Musa spp. ) waste pyrolysis for bio-oil production[J]. Biofuels, 2021, 12(7): 879-883
[16] ALNOUSS A, PARTHASARATHY P, MACKEY H R, et al. Pyrolysis study of different fruit wastes using an Aspen Plus model[J]. Frontiers in Sustainable Food Systems, 2021, 5: 4
[17] MORALES-MENDOZA L F, AZZARO-PANTEL C. Bridging LCA data gaps by use of process simulation for energy generation[J]. Clean Technologies and Environmental Policy, 2017, 19(5): 1535-1546
[18] CORONA A, AMBYE-JENSEN M, VEGA G C, et al. Techno-environmental assessment of the green biorefinery concept: Combining process simulation and life cycle assessment at an early design stage[J]. Science of the Total Environment, 2018, 635: 100-111
[19] SAJID Z, KHAN F, ZHANG Y. Process simulation and life cycle analysis of biodiesel production[J]. Renewable Energy, 2016, 85: 945-952
[20] HAN D, YANG X, LI R, et al. Environmental impact comparison of typical and resource-efficient biomass fast pyrolysis systems based on LCA and Aspen Plus simulation[J]. Journal of Cleaner Production, 2019, 231: 254-267
[21] KHAN M S A, GRIOUI N, HALOUANI K, et al. Techno-economic analysis of production of bio-oil from catalytic pyrolysis of olive mill wastewater sludge with two different cooling mechanisms[J]. Energy Conversion and Management, 2022, 13: 100170
[22] 魏文栋, 陈竹君, 耿涌, 等. 循环经济助推碳中和的路径和对策建议[J]. 中国科学院院刊, 2021, 36(9): 1030-1038
[23] 贾懿曼, 张顺利, 舒新前, 等. 城市固体废弃物热解研究现状[J]. 可再生能源, 2012, 30(12): 71-76
[24] 刘壮, 田宜水, 马大朝, 等. 生物质热解的典型影响因素及技术研究进展[J]. 可再生能源, 2021, 39(10): 1279-1286
[25] 仉利, 姚宗路, 赵立欣, 等. 生物质热解制备高品质生物油研究进展[J]. 化工进展, 2020, 40(1): 139-150
[26] 赵坤, 肖军, 沈来宏, 等. 生物质热解制油系统性能分析[J]. 太阳能学报, 2012, 33(11): 1962-1967
[27] 焦宇欣. 添加剂对沼渣热解制备生物炭特性影响及制备工艺改进研究[D]. 贵阳: 贵州民族大学, 2021.
[28] 李恒威, 叶建军, 魏道江. 基于生命周期评价的生态绿屋面形式比较测试研究[J]. 中国测试, 2012, 38(3): 98-100
[29] ZHAO R, XU Y, WEN X, et al. Carbon footprint assessment for a local branded pure milk product: a lifecycle based approach[J]. Food Science and Technology, 2017, 38: 98-105
[30] 陈冰, 封静, 黄文雄, 等. 应用生命周期模型评价餐厨垃圾处理技术[J]. 环境工程学报, 2011, 5(8): 1857-1862
[31] 谭洪, 王树荣, 骆仲泱, 等. 金属盐对生物质热解特性影响试验研究[J]. 工程热物理学报, 2005(5): 742-744
[32] 王树荣, 廖艳芬, 骆仲泱, 等. 氯化钾催化纤维素热裂解动力学研究[J]. 太阳能学报, 2005(4): 452-457
[33] 王新运, 万新军, 吴凤义. 生物质催化热解特性和动力学研究[J]. 应用化工, 2010, 39(3): 377-379
[34] 于博阳, 尹丽洁, 路明强, 等. 温度对生物质热解过程中传热特性的影响[J]. 工程热物理学报, 2021, 42(12): 3054-3059
[35] 颜蓓蓓, 杨学忠, 侯林桐, 等. 村镇生活垃圾热解处理技术综述[J]. 中国环境科学, 42(8): 3755-3769.
[36] CHOI M K, PARK H C, CHOI H S. Comprehensive evaluation of various pyrolysis reaction mechanisms for pyrolysis process simulation[J]. Chemical Engineering and Processing-Process Intensification, 2018, 130: 19-35
[37] AFIF R A, ANAYAH S S, PFEIFER C. Batch pyrolysis of cotton stalks for evaluation of biochar energy potential[J]. Renewable Energy, 2020, 147: 2250-2258
[38] 王菁, 蔡佳校, 张柯, 等. 不同组成纤维素热解炭的燃烧行为分析[J]. 烟草科技, 2017, 50(7): 76-81
[39] PANG Y X, YAN Y, FOO D C Y, et al. The influence of lignocellulose on biomass pyrolysis product distribution and economics via steady state process simulation[J]. Journal of Analytical and Applied Pyrolysis, 2021, 158: 104968
[40] CHO D W, KWON G, OK Y S, et al. Reduction of bromate by cobalt-impregnated biochar fabricated via pyrolysis of lignin using CO2 as a reaction medium[J]. ACS Applied Materials & Interfaces, 2017, 9(15): 13142-13150
[41] 刘雨豪, 李爱军, 陈郭石. 垃圾低温热解的特性模拟及过程优化[J]. 应用能源技术, 2019(5): 1-6
[42] 王思怡, 李月慧, 葛玉洁, 等. NTP-DBD气化城市污泥及其模型化合物: 气氛对产物分布及特性的影响[J]. 化工进展, 2022, 41(4): 2150-2160
[43] 贾里, 郭晋荣, 王彦霖, 等. 不同气氛条件下生物焦的热解路径及脱汞机理[J]. 中南大学学报(自然科学版), 2021, 52(6): 2011-2022
[44] 胡志锋, 马晓茜, 梁增英. 广州市生活垃圾处理工艺的生命周期评价[J]. 可再生能源, 2012, 30(1): 106-112