您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>微波消解-ICP-MS法测定土壤中的汞

微波消解-ICP-MS法测定土壤中的汞

2002    2022-10-26

免费

全文售价

作者:杨永建, 夏莎莎, 李红华, 李洁

作者单位:中国科学院生态环境研究中心,北京 100085


关键词:微波消解;ICP-MS;汞元素;土壤


摘要:

建立一种利用微波消解预处理样品,ICP-MS法测定土壤中汞含量的方法。分析微波消解程序的设定、汞的记忆效应、质谱干扰和非质谱干扰对检测结果的影响,并给出解决办法。分析检测结果表明,微波消解温度为180 ℃、保持时间为15 min时,土壤中汞回收率良好;盐酸和汞形成络合物可减少汞的记忆效应,并保持汞的稳定性;选择内标元素Rh可有效校正非质谱干扰;选择同位素202Hg作为检测对象并开启氦气碰撞模式,可减少质谱干扰。汞元素浓度在0~5 μg /L的范围内,其标准曲线线性关系良好,线性相关系数达到0.9996;土壤标准物质GBW-07401a测定值符合证书参数;土壤样品多次检测相对标准偏差为3.8%,样品加标回收率为105%;方法检出限为0.001 mg/kg。该方法易操作、检出限低、精准度高,适用于土壤中汞的定量分析。


Determination of mercury in soils by ICP-MS with microwave digestion
YANG Yongjian, XIA Shasha, LI Honghua, LI Jie
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
Abstract: A method for determining mercury content in soil is established based on microwave digestion pretreatment in combination with inductively coupled plasma mass spectrometry (ICP-MS). The influences on parameter setting of the microwave digestion program and the memory effect of mercury are discussed, as well as analyses on mass spectrum interference and non-mass spectrum interference. According to experimental analysis, good recovery rate of mercury from the soil is attained when the microwave digestion temperature is kept at 180 °C and a duration at 15 min, the formation of haloacid complex reduces the memory effect of mercury and maintains the stability of mercury, the selection of internal standard element Rh can effectively avoid non-mass spectrum interference, selecting isotope 202Hg as test object and turning on the helium collision mode can reduce mass spectrum interference. The concentration of mercury element in the range of 0-5 μg/L shows a good linear relationship between the standard curve, with a linear correlation coefficient up to 0.999 6. The measured value of the standard reference material for soil (GBW-07401a) is in compliance with the certificate parameter, the relative standard deviation of multiple tests for soil sample is 3.8%, the recovery rate of sample spiking is 105%, and the detection limit is 0.001 mg/kg. This method is easy-to-operate and suitable for quantitative analysis of mercury in soil with low detection limit and high accuracy.
Keywords: microwave digestion;ICP-MS;mercury element;soils
2022, 48(10):46-50  收稿日期: 2022-07-28;收到修改稿日期: 2022-09-30
基金项目: 国家自然科学基金项目(22193052,22076215);中国科学院技术支撑人才项目(2021)
作者简介: 杨永建(1980-),男,山东聊城市人,工程师,硕士,主要从事无机元素分析技术相关研究
参考文献
[1] 李延隆. ICP-MS测汞元素稳定性及记忆效应方法比较[J]. 当代化工研究, 2021, 18: 30-31
[2] YIN D L, HE T R, YIN R S, et al. Effects of soil properties on production and bioaccumulation of methylmercury in rice paddies at a mercury mining area China[J]. Journal of Environmental Sciences, 2018, 68(6): 194-205
[3] 王小瑞. ICP-MS在土壤砷、汞元素检测中的研究与应用[J]. 安徽农业通报, 2020, 26(21): 104-108
[4] 王春勇, 王爽, 商井远, 等. 土壤汞污染修复研究进展[J]. 辽宁化工, 2021, 50(10): 1474-1476
[5] 张菀. 农田土壤汞污染修复技术研究[J]. 广东土木与建筑, 2021, 28(3): 86-88
[6] 闫月娥. 微波消解-冷原子荧光光谱法测定 V2O5-WO3/TiO2系脱硝催化剂中汞的含量[J]. 中国测试, 2021, 47(4): 72-76
[7] SHIRKHANLOO H, MIRZAHOSSEINI S H, SHIRKHANLOO N, et al. The evaluation and determination of heavy metals pollution in edible vegetables, water and soil in the south of Tehran province by GIS[J]. Ar-chives of Environmental Protection, 2015, 42(2): 64-74
[8] 司敬沛, 刘以笏, 刘海涛. 稻米及其植株器官、环境土壤中总汞的快速测定[J]. 中国无机分析化学, 2022, 12(1): 64-68
[9] 颜忠国, 杨绍辉, 周 照. ICP-OES 测定土壤中锌、铜、铅、镉、锰、汞、砷、镍、铬、镁十种元素[J]. 世界有色金属, 2021, 5: 127-128
[10] 刘笑笑, 宋志峰, 陈冠宁, 等. 微波消解/ICP-MS法测定土壤中的砷和汞[J]. 南方农业, 2018, 12(14): 190-191
[11] GREDA K, WELNA M, POHL P. Determination of Ag, Bi, Cd, Hg, Pb, Tl, and Zn by inductively coupled plasma mass spectrometry combined with vapor generation assisted by solution anode glow discharge – A preliminary study[J]. Talanta, 2022, 246: 123500
[12] 汪勇, 姚婷, 孙秉康, 等. 电感耦合等离子体质谱法同时分析食盐中24种元素[J]. 化学试剂, 2003, 40(5): 449-453
[13] 徐雯, 方琦, 漆亮亮, 等. 微波消解-电感耦合等离子体质谱法测定土壤中铬、铜、锌、镉、铅、镍的含量[J]. 理化检验-化学分册, 2021, 57(10): 923-927
[14] 兰冠宇, 李鹰, 俞晓峰, 等. 超级微波消解-电感耦合等离子体质谱(ICP-MS)法测定土壤中13种元素[J]. 中国无机分析化学, 2021, 11(5): 1-8
[15] 吴佳伦, 罗 霜, 李思思, 等. 微波消解/石墨消解-ICP-MS 测定土壤中的多种重金属[J]. 中国测试, 2021, 47(5): 58-63
[16] KLADSOMBOON S, JAIYEN C, CHOPRATHUMMA C, et al. Heavy metals contamination in soil, surface water, crops and resident blood in Uthai District, Phra Nakhon Si Ayutthaya, Thailand[J]. Environ Geochem Health, 2020, 42: 545-561
[17] CHEN P, ZHANG H M, YAO B M, et al. Bioavailable arsenic and amorphous iron oxides provide reliable predictions for arsenic transfer in soil-wheat system[J]. Journal of Hazardous Materials, 2020, 383: 121160
[18] 赵小学, 位志鹏, 王建波, 等. 王水水浴消解/ICP-MS法测定土壤及水系沉积物中As、Se、Sb、Hg、Bi的实用性研究[J]. 中国测试, 2021, 47(9): 61-69
[19] 郝伟, 李丽, 王蕴平, 等. 电感耦合等离子体质谱检测水中的汞[J]. 环境化学, 2020, 39(6): 1726-1728
[20] EPA Method 200.8. Determination of trace elements in waters and wastes by inductively coupled plasma-mass spectrometr[S]. Revision 5.4, EMMC Version, 1994.
[21] 李冰, 杨红霞. 电感耦合等离子体质谱原理和应用[M]. 北京: 地质出版社, 2005.
[22] 刘虎生, 邵宏翔. 电感耦合等离子体质谱技术与应用[M]. 北京: 化学工业出版社, 2005.
[23] 王国伟, 李东雷, 张海青, 等. ICP-MS检测地下水中汞的方法研究[J]. 吉林地质, 2018, 37(1): 80-83