您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>分布式光纤裂缝监测实验与数值分析

分布式光纤裂缝监测实验与数值分析

1198    2022-12-28

免费

全文售价

作者:赵丽芝1, 唐福建1, 周智2

作者单位:1. 大连理工大学建设工程学部土木工程学院,辽宁 大连 116024;
2. 海南大学土木建筑工程学院,海南 海口 570228


关键词:裂缝监测;分布式光纤;界面滑移;粘聚力单元


摘要:

针对分布式光纤监测开裂基体裂缝宽度传递率问题,该文提出一种考虑光纤-涂覆层界面滑移的分布式光纤监测裂缝应变传递模型。以理论分析为基础,建立分布式光纤监测裂缝扩展的有限单元模型(FEM),将Cohesive单元嵌入至光纤与光纤涂覆层之间以模拟界面滑移行为,结合OFDR分布式光纤监测裂缝实验验证了该模型的可行性,进一步分析得到光纤应变峰值与裂缝宽度之间的函数关系。FEM和试验结果均表明,将光纤应变积分大小作为基体裂缝宽度的预测值,其误差范围小于5%。该研究为分布式光纤监测基体开裂的应用提供了理论依据,最后给出的裂缝传递率提高了分布式光纤监测裂缝宽度的准确性。


Experimental and numerical analysis of cracking monitoring based on distributed optical fiber
ZHAO Lizhi1, TANG Fujian1, ZHOU Zhi2
1. School of Civil Engineering, Dalian University of Technology, Dalian 116024, China;
2. School of Civil and Architectural Engineering, Hainan University, Haikou 570228, China
Abstract: In order to solve the problem of crack width transmissibility of cracked matrix monitored by distributed optical fiber, a strain transfer model of distributed optical fiber monitoring crack is proposed considering the interface slip between fiber and coating layer. Based on theoretical analysis, a finite element model (FEM) for distributed optical fiber crack propagation monitoring was established, and Cohesive elements were embedded into the interface between the optical fiber and optical fiber coating to simulate interface slip behavior. The feasibility of the model was verified by a test monitoring crack width based on OFDR distributed optical fiber. The functional relationship between the fiber strain peak value and crack width is obtained by further analysis. FEM and experimental results show that the error of considering the fiber strain integral as matrix crack width is less than 5%. The study provides a theoretical basis for the application of distributed optical fiber to monitor matrix cracking, and the transmittance of cracks improves the accuracy of crack width monitoring.
Keywords: crack monitoring;distributed optical fiber;interface slip;Cohesive element
2022, 48(12):7-14  收稿日期: 2022-03-09;收到修改稿日期: 2022-05-17
基金项目: 国家自然科学基金资助项目(51878119,52111540162);辽宁省自然科学基金资助项目(2020-MS-121)
作者简介: 赵丽芝(1994-),女,山西临汾市人,博士研究生,专业方向为智能传感器与结构健康监测
参考文献
[1] 郭立媛, 张磊, 李威, 等. 基于先验知识MinMax k-Means聚类算法的道路裂缝研究[J]. 中国测试, 2018, 44(4): 112-117
[2] 王坤, 赵羽习, 夏晋. 混凝土结构锈裂形态试验研究及数值模拟[J]. 建筑结构学报, 2019, 40(7): 138-145
[3] 单宝华, 赵仁孝, 马世英, 等. 散斑图像相关数字技术在混凝土砌块房屋温度裂缝监测中的应用研究[J]. 建筑结构, 2003, 33(4): 19-21
[4] 赵新波, 熊光勤, 刘桂玲, 等. 低渗砂岩力学试验及复杂断块裂缝分布预测研究[J]. 中国测试, 2015, 41(3): 1-7
[5] WEI H, HU B, WANG F, et al. Temporal-spatial evolution characteristics of acoustic emission in asphalt concrete cracking process under low temperature[J]. Construction and Building Materials, 2020, 248: 118632
[6] SUN Y, HUANG P, SU J, et al. Depth estimation of surface-opening crack in concrete beams using impact-echo and non-contact video-based methods[J]. EURASIP Journal on Image and Video Processing, 2018: 144
[7] 孙威, 阎石, 焦莉, 等. 基于压电波动法的混凝土裂缝损伤监测技术[J]. 工程力学, 2013, 30(S1): 206-211
[8] POUR-GHAZ M, BARRETT T, LEY T, et al. Wireless crack detection in concrete elements using conductive surface sensors and radio frequency identification technology[J]. Journal of Materials in Civil Engineering, 2013, 2012(5): 923-929
[9] LIM M J, LEE H K, NAM I W, et al. Carbon nanotube/cement composites for crack monitoring of concrete structures[J]. Composite Structures, 2017, 180: 741-750
[10] 陆剑俊, 张雄, 江欢. 导电涂膜裂缝监测技术的试验研究[J]. 建筑材料学报, 2006, 9(6): 742-745
[11] CAPUA C D, MORELLO R, JABLONSKI I. Active and eddy current pulsed thermography to detect surface crack and defect in historical and archaeological discoveries[J]. Measurement, 2017, 116: 676-684
[12] KARIMIAN S F, BRUCK H A, MODARRES M. Thermodynamic entropy to detect fatigue crack initiation using digital image correlation, and effect of overload spectrums[J]. International Journal of Fatigue, 2019, 129: 105256.1-105256.10
[13] 陈刚, 刘宏月, 蔡林衡, 等. 光纤应变传感器检测标定技术研究[J]. 中国测试, 2021, 47(S2): 88-91
[14] 何勇, 姜帅, 毛江鸿, 等. 结构裂缝的分布式光纤监测方法及试验研究[J]. 土木建筑与环境工程, 2012, 34(1): 1-6
[15] 孙丽, 梁德志, 李宏男. 用FBG传感器监测框架-剪力墙结构裂缝[J]. 振动. 测试与诊断, 2010, 30(5): 496-499
[16] 李爱群, 周广东. 光纤Bragg光栅传感器测试技术研究进展与展望(Ⅱ): 位移、加速度、索力、钢筋锈蚀、裂缝测试[J]. 东南大学学报(自然科学版), 2009, 39(6): 1307-1314
[17] IMAI M, FENG M. Sensing optical fiber installation study for crack identification using a stimulated Brillouin-based strain sensor[J]. Structural Health Monitoring, 2012, 11(5): 501-509
[18] ZHANG D, YANG Y, XU J, et al. Structural crack detection using DPP-BOTDA and crack-induced features of the Brillouin gain spectrum[J]. Sensors, 2020, 20(23): 6947
[19] RODRIGUEZ G, CASAS J R, VILLALBA S. Shear crack width assessment in concrete structures by 2D distributed optical fiber[J]. Engineering Structures, 2019, 195: 508-523
[20] 吴静红, 刘浩, 杨鹏, 等. 基于光频域反射计技术的混凝土裂缝识别与监测[J]. 激光与光电子学进展, 2019, 56(24): 140-147
[21] 田昊, 唐福建, 李宏男. 基于OFDR分布式光纤的钢筋锈蚀监测技术[J]. 建筑材料学报, 2020, 23(6): 1524-1530
[22] FENG X, ZHOU J, SUN C, et al. Theoretical and experimental investigations into crack detection with BOTDR-distributed fiber optic sensors[J]. Journal of Engineering Mechanics, 2013, 139(12): 1797-1807
[23] BASSIL A, CHAPELEAU X, LEDUC D, et al. Concrete crack monitoring using a novel strain transfer model for distributed fiber optics sensors[J]. Sensors, 2020, 20(8): 2220