您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>梯度温度场下热不敏系统主反射镜性能的研究

梯度温度场下热不敏系统主反射镜性能的研究

975    2022-12-28

免费

全文售价

作者:史梦飞1, 高天元1, 韩旭1, 刘永清1, 王晓燕2

作者单位:1. 长春理工大学光电工程学院 光电测控与光信息传输技术教育部重点实验室,吉林 长春 130022;
2. 北京控制工程研究所,北京 100190


关键词:主反射镜;梯度温度场;仿真;RMS


摘要:

星敏感器作为高精度导航仪器,其主反射镜的面型精度是影响导航精度的主要因素。由于星敏感器处于复杂的温度环境中,在主反射镜上会出现梯度温度场,从而引起反射镜面型变化。为保证导航精度,热不敏系统得以发展。该文针对一款热不敏系统的236 mm主反射镜,进行梯度温度场的仿真和实验综合研究,来验证该反射镜能否达到面型精度的指标要求。实验中用加热片模拟主反射镜表面梯度温度场,并用干涉仪检测反射面RMS值。仿真应用Patran、Sigfit等软件进行,边界条件与实验环境保持一致,计算得出主反射镜梯度温度场和反射面RMS值。相同加热条件下,实验和仿真结果的温度变化趋势相同,实验和仿真结果的RMS增长曲线趋势相同。实验测得的RMS值和仿真计算结果的RMS值均小于0.03$ \lambda $($ \lambda {\text{ = }}632.8\;{\rm{nm}} $),满足反射镜指标要求。实验和仿真结果都表明该系统的主反射镜设计满足系统要求。


Characteristics study for main reflector in the thermally insensitive system in gradient temperature field
SHI Mengfei1, GAO Tianyuan1, HAN Xu1, LIU Yongqing1, WANG Xiaoyan2
1. Key Laboratory of Optoelectric Measurement and Optical Information Transmission Technology, Ministry of Education, School of Electronic Engineering, Changchun University of Science and Technology, Changchun 130022, China;
2. Beijing Institute of Control Engineering, Beijing 100190, China
Abstract: Star sensor is a high-precision navigation instrument, surface accuracy of the main reflector is main factor that affects the navigation accuracy. Since the star sensor is in a complex temperature environment, there is a gradient temperature field on the main reflector, which caused a change in the surface of the reflector. In order to ensure navigation accuracy, thermally insensitive systems have been developed. In this paper, a 236 mm main mirror of a thermally insensitive system has been simulated and experimented as a comprehensive study, that verify whether the reflector can meet the requirements of surface accuracy. In the experiment, a heating plate was used to simulate the gradient temperature field on the surface of the main reflector, and an interferometer was used to detect the RMS value of the reflector. The simulation is carried out with Patran and Sigfit et, and boundary conditions are consistent with the experimental environment. The gradient temperature field of the main mirror and the RMS value of the reflecting surface are calculated. Results of the temperature change trends of the experimental and simulation are the same under the same heating conditions,the RMS growth curve trends of experimental and simulation are the same. RMS value measured by experiment and RMS value of the simulation calculation results are both less than 0.03$ \lambda $($\lambda {\text{ = 632.8\;nm}}$), these meet the requirements of the reflector index. Results of experiment and simulation show that design of the main mirror for the system meets the system requirements.
Keywords: main mirror;gradient temperature field;simulation;RMS
2022, 48(12):80-85  收稿日期: 2021-10-19;收到修改稿日期: 2021-12-07
基金项目: 国家自然科学基金青年科研基金(61805025)
作者简介: 史梦飞(1996-),男,河南商丘市人,硕士研究生,专业方向现代光学测试理论与技术
参考文献
[1] 张辉, 周向东, 汪新梅, 等. 近地空间全天时星敏感器技术现状及发展综述[J]. 航空学报, 2020, 41(8): 19-31
[2] 许倩. 基于温度变化的星敏感器在轨标定研究[D]. 长春: 长春工业大学, 2021.
[3] 潘森, 高婧婧, 许孝芳, 等. 多星敏感器地面热漂移标定位置误差检测研究[J]. 激光技术, 2020, 44(6): 664-667
[4] 赵子君. 温度变化对星敏感器光学参数的影响机理研究[D]. 长春: 长春工业大学, 2020.
[5] 凯斯·B·道尔, 维克托·L·基恩伯格, 格雷戈里·J·迈克尔斯. 光机集成分析[M]. 连华东, 王小勇, 徐鹏, 译. 北京: 国防工业出版社, 2015.
[6] 谷果果. 空间温变场对不同结构平面反射镜的性能影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
[7] 杨勋, 徐抒岩, 马宏财, 等. 径向温度梯度对轻量化反射镜面形精度的影响[J]. 光学精密工程, 2019, 27(7): 1552-1560
[8] 邵君, 孙胜利, 王成良, 等. 球面反射镜镜面热变形的数值分析[J]. 光学技术, 2006, 32(S1): 67-69, 72
[9] 杨笑迪. 大口径低温反射镜支撑结构设计技术研究[D]. 廊坊: 北华航天工业学院, 2020.
[10] HU X C, ZHEN W, L C, et al. A self-correction method for deformable mirror with thermal deformation[J]. Optik, 2017: 145
[11] PEARSON E, STEPP L. Response of large optical mirrors to thermal distributions[J]. Proceedings of SPIE-The International Society for Optical Engineering, 1987, 748: 215-228
[12] 熊稚莉, 陈波, 蔡豫晋, 等. 基于温度场分析的航空大型烘箱温度性能研究[J]. 中国测试, 2021, 47(9): 151-157
[13] 卢承斌, 姚永灵, 张泰岩, 等. 基于数值模拟技术的电站冷却塔性能优化[J]. 中国测试, 2022, 48(1): 168-176