您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>传导骚扰测量中的盲源分离与频谱仿真

传导骚扰测量中的盲源分离与频谱仿真

982    2023-04-20

免费

全文售价

作者:邱傅杰, 陈婉如, 李金龙, 马士平

作者单位:上海市计量测试技术研究院基础性能试验中心,上海 200233


关键词:电磁干扰;盲源分离;接收机;频谱仿真


摘要:

为实现多分量混合电磁干扰(electromagnetic interference,EMI)信号中的信息挖掘,提出一种基于单通道盲源分离和频谱仿真的分析方法。首先,采用奇异谱分析(singular spectrum analysis,SSA)结合独立分量分析(independent component analysis,ICA)对混合信号进行单通道盲源分离。其次,对分离所得波形采用短时傅里叶变换(short time Fourier transform,STFT)来构建仿真EMI频谱。最终,将仿真频谱与混合信号的接收机实测频谱进行对比研究。实验结果表明:分离信号的波形畸变较小,仿真频谱与实测频谱在基波和低次谐波处较为吻合。通过提高ICA中的特征维度,可以进一步提升仿真频谱的质量,但会导致算法收敛困难。该方法能有效分解混合EMI信号并解释其对应频谱。


Blind source separation and spectrum simulation in conducted disturbance measurement
QIU Fujie, CHEN Wanru, LI Jinlong, MA Shiping
Fundamental Performance Test Centre, Shanghai Institute of Measurement and Testing Technology, Shanghai 200233, China
Abstract: In order to realize information mining from the multicomponent mixed electromagnetic interference (EMI) signal, an analysis method based on single-channel blind source separation and spectrum simulation is provided. First, a combination of singular spectrum analysis (SSA) method and independent component analysis (ICA) method is used to achieve the single-channel blind source separation on the mixed signal. Second, the short time Fourier transform (STFT) is used to construct simulated EMI spectrums from waveforms of separated signals. Finally, a comparative study is performed between simulated spectrums and the receiver measured one of mixed signal. Experiment results show that distortion of separated signals is small, and simulated spectrums fit with the measured one well in fundamental and low order harmonic frequencies. The quality of simulated spectrums can be further improved by increasing the feature dimensions in ICA, while the convergence difficulty in calculation is accompanied by it. This method can effectively decompose the single-channel EMI signal and explain its spectrum.
Keywords: electromagnetic interference;blind source separation;receiver;spectrum simulation
2023, 49(4):13-20  收稿日期: 2021-06-29;收到修改稿日期: 2021-09-15
基金项目: 上海市科技重大专项(2017SHZDZX01);上海市基础性能试验专业技术服务平台(20DZ2290400)
作者简介: 邱傅杰(1989-),男,江苏启东市人,助理工程师,硕士,主要研究方向为电磁兼容领域的智能测量
参考文献
[1] 全国无线电干扰标准化技术委员会. 无线电骚扰和抗扰度测量设备和测量方法规范 第2-1部分: 无线电骚扰和抗扰度测量方法 传导骚扰测量: GB/T 6113.201—2018[S]. 北京: 中国质检出版社, 2018.
[2] COHEN L. What is a multicomponent signal?[C]//CIASSP-92. San Francisco: IEEE, 1992: 113-116.
[3] HOPGOOD J R, RAYNER P J W. Single channel signal separation using linear time varying filters: separability of non-stationary stochastic signals[C]// ICASSP-99. Phoenix AZ: IEEE, 1999: 1449-1452.
[4] 黄大伟, 戴吾蛟, 刘斌, 等. 单通道独立分量分析算法的比较分析[J]. 大地测量与地球动力学, 2014, 34(1): 135-138
[5] DAVIES M E, JAMES C J. Source separation using single channel ICA[J]. Signal Processing, 2007, 87(8): 1819-1832
[6] HONG H, LIANG M. Separation of fault features from a single-channel mechanical signal mixture using wavelet decomposition[J]. Mechanical Systems and Signal Processing, 2007, 21(5): 2025-2040
[7] LIN J, ZHANG A. Fault feature separation using wavelet-ICA filter[J]. NDT & E International, 2005, 38(6): 421-427
[8] MIJOVIĆ B, VOS M D, GLIGORIJEVIĆ I, et al. Source separation from single-channel recordings by combining empirical-mode decomposition and independent component analysis[J]. IEEE Transactions on Biomedical Engineering, 2010, 57(9): 2188-2196
[9] 郭一娜. 单通道线性混合信号盲源分离算法研究[M]. 北京: 电子工业出版社, 2015.
[10] XIAO C, ZHAO T. Identification method of EMI sources based on measured single-channel signal and its application in aviation secondary power source design[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(2): 439-446
[11] 卢广阔. 采用MRSSA-ICA的共信道多通信信号盲分离[J]. 电讯技术, 2020, 60(5): 554-559
[12] LI C, ZHANG L, DONG T, et al. An EMI receiver model with consideration of the intermediate frequency filter[C]//2016 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), Shenzhen: IEEE, 2016: 233-236.
[13] 张向明, 赵治华, 孟进, 等. 考虑测量带宽影响的电磁干扰频谱FFT计算[J]. 中国电机工程学报, 2010, 30(36): 117-122
[14] 祝志博, 赵阳, 颜伟, 等. 基于离散数学模型的时域EMI接收机检波器建模研究[J]. 南京师范大学学报(工程技术版), 2018, 18(4): 1-8
[15] KRUG F, MUELLER D, RUSSER P. Signal processing strategies with the TDEMI measurement system[J]. IEEE Transactions on Instrumentation and Measurement, 2004, 53(5): 1402-1408
[16] BRAUN S, DONAUER T, RUSSER P. A real-time time-domain EMI measurement system for full-compliance measurements according to CISPR 16-1-1[J]. IEEE Transactions on Electromagnetic Compatibility, 2008, 50(2): 259-267
[17] HÖRMAIER K, ZANGL H, ZOJER H. An EMI receiver model to evaluate electromagnetic emissions by simulation[C]//2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings, Graz: IEEE, 2012: 2558-2562.
[18] 谢静逸, 陈为, 陈庆彬. 基于实际通带特性的EMI接收机精确模型[J]. 中国电机工程学报, 2019, 39(14): 4251-4261
[19] HYVÄRINEN A, KARHUNEN J, OJA E. Independent component analysis[M]. New York: John Wiley & Sons, Inc., 2001: 154, 165-202.
[20] NAWAB S H, QUATIERI T F. Short-time Fourier transform[C]//LIM J S, OPPENHEIM A V. Advanced topics in signal processing. Englewood Cliffs, New Jersey: Prentice hall, 1988: 289-337.
[21] 吴漫, 冯早, 黄国勇, 等. 基于变分模态分解和Wigner-Ville的单向阀早期故障诊断[J]. 中国测试, 2019, 45(4): 116-122
[22] 句海洋, 王新华, 金浩, 等. 一种非线性Chirp信号模态分解算法研究[J]. 中国测试, 2020, 46(10): 103-110
[23] 王余奎, 朱倩, 张磊, 等. LCD谱熵及其在滚动轴承退化状态识别中的应用[J]. 中国测试, 2020, 46(3): 135-142