您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>用于生物检测的过氧化氢荧光探针研究进展

用于生物检测的过氧化氢荧光探针研究进展

1054    2023-11-27

免费

全文售价

作者:李欣

作者单位:新疆医科大学 新疆地区高发疾病研究教育部重点实验室, 新疆 乌鲁木齐 830011


关键词:过氧化氢;荧光探针;生物检测


摘要:

过氧化氢(H2O2)是活性氧分子中重要的一种,人体正常水平的H2O2不会对机体造成损害。但是,细胞内过氧化氢的持续过度产生可能会导致细胞和生物分子的氧化损伤,引发生物体多种功能障碍,导致多种疾病的发生。因此,可视化、动态、实时地靶向和准确地定量细胞中的H2O2,对于了解其在细胞生理学中的作用进而用于病理诊断的标志物具有至关重要的作用。生物兼容性高的H2O2荧光探针可以对生物样本进行无损分析,具有广泛的应用前景。近年来,多种不同的H2O2荧光探针在相关生物学事件中的应用显著促进H2O2探针在医学和生物学领域的发展。该文介绍近年用于H2O2生物检测的有机探针及无机纳米探针两种荧光探针的研究机理及应用现状,并对探针的存在问题及研究方向进行展望,为进一步进行该领域的研究提供理论支撑。


Research progress of hydrogen peroxide fluorescence probes for biological detection
LI Xin
Key Laboratory of High Incidence Diseases Research in Xinjiang(Ministry of Education), Xinjiang Medical University, Urumqi 830011, China
Abstract: Hydrogen peroxide (H2O2), as an important molecule of reactive oxygen species, normal levels of which in the human body will not cause damage to the body. However, the continuous excessive production of hydrogen peroxide within cells may lead to oxidative damage to cells or biomolecules, various dysfunction of organisms, and the occurrence of many diseases. Therefore, visualization, dynamic, real-time targeting, and accurate quantification of H2O2 in cells are crucial for understanding its role in cell physiology and serving as biomarkers for pathological diagnosis. H2O2 fluorescent probes with high biocompatibility can perform non-destructive analysis of biological samples and have broad application prospects. In recent years, the application of various H2O2 fluorescent probes in related biological events has significantly promoted the development of H2O2 probes in the fields of medicine and biology. This article introduces the research mechanism and application advantages of organic probe and inorganic nanoprobe, used for H2O2 biological monitoring in recent years, and prospects the existing problems and research directions of the probes, providing theoretical support for further research in this field.
Keywords: hydrogen peroxide;fluorescence probe;biological detection
2023, 49(11):30-37  收稿日期: 2023-05-04;收到修改稿日期: 2023-06-15
基金项目: 新疆维吾尔自治区自然科学基金项目(2021D01C284)
作者简介: 李欣(1988-),女,新疆乌鲁木齐市人,高级实验师,研究方向为药物分析、生物医学工程学。
参考文献
[1] 何芸, 张卫卫, 孔祥云. 血清白细胞介素-6、肿瘤坏死因子-α、活性氧在食管癌术后并发心房颤动患者体内表达水平及检测意义[J]. 陕西医学杂志, 2022, 51(7): 816-819.
[2] ZI X W, YI F Z, WANG C D, et al. Recent progress of natural products in tumor prevention and treatment by regulating the reactive oxygen species level[J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(6): 455-467.
[3] 郑坤, 嘎鲁, 马宇衡,等. 活性氧(ROS)依赖性抗肿瘤药物的研究进展[J]. 广东药科大学学报, 2022, 38(1): 130-136.
[4] COGLIANO T, RUSSO V, TURCO R, et al. Revealing the role of stabilizers in H2O2 for the peroxyformic acid synthesis and decomposition kinetics[J]. Chemical Engineering Science, 2022(251): 117488.
[5] SUDHEER A, JYOTHI M V, DEVANNA N. Cardioprotective effect of butanol fraction of rivea ornata against H2O2 induced oxidative stress in H9c2 cells: role of its phenolic content and antioxidant effect[J]. Sciencedomain International, 2021.
[6] NJIMA M, LEGRAND L. Ag nanoparticles-oxidized green rust nanohybrids for novel and efficient non-enzymatic H2O2 electrochemical sensor[J]. Journal of Electroanalytical Chemistry, 2022, 906: 116015.
[7] 郑婉, 林云, 左琦, 等. SNHG3调控miR-186对过氧化氢处理的血管内皮细胞损伤的影响[J]. 中国免疫学杂志, 2022, 38(19): 2330-2335.
[8] HAO Y, CHEN Y, HE X, et al. Polymeric nanoparticles with ROS-responsive prodrug and platinum nanozyme for enhanced chemophotodynamic therapy of Colon cancer[J]. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 2020, 7(20): 2001853.
[9] ZHOU J, ZHAO R, DU Y, et al. A Si-CdTe composite quantum dots probe with dual-wavelength emission for sensitively monitoring intracellular H2O2[J]. Advanced functional materials, 2022(20): 32.
[10] JIANG N, ZHOU X, ZHONG T, et al. A new pyrene-based "turn-on" fluorescent probe for highly selective detection of hypochlorite in aqueous solution and in living cells[J]. Chemical Papers, 2023, 77(1): 197-205.
[11] CHOUDHURY R, RICKETTS A T, MOLINA D G, et al. A boronic acid based intramolecular charge transfer probe for colorimetric detection of hydrogen peroxide[J]. Tetrahedron Letters, 2019, 60(46): 151258.
[12] CHENG X, CHAI Y, XU J, et al. Enzyme cascade reaction-based ratiometric fluorescence probe for visual monitoring the activity of alkaline phosphatase[J]. Sensors and Actuators B: Chemical, 2020, 309: 127765.
[13] YU J, ZHANG Z, LI B, et al. Dual-emissive near-infrared carbon dot-based ratiometric fluorescence sensor for lysozyme[J]. ACS Applied Nano Materials, 2022, 5(1): 1656-1663.
[14] 韩琪, 吴楠, 程思宇, 等. 快速识别水合肼荧光探针的合成及细胞成像研究[J]. 中国测试,2020,46(6):56-60.
[15] FENG G, ZHAI P, LI Z, et al. In-situ construction of fluorescent probes for hydrogen peroxide detection in mitochondria and lysosomes with on-demand modular assembling and double turn-on features[J]. Bioorganic chemistry, 2023, 130: 106199.
[16] 刘爽, 姜文硕, 兰欣宇, 等. 过氧化氢荧光探针的研究进展[J]. 分析化学, 2022, 50(3): 341-355.
[17] 党耶城, 冯杨振, 陈杜刚. 红光/近红外光硫醇荧光探针[J]. 化学进展, 2021, 33(5): 868-882.
[18] BE K B, GRABSKA J, HUCK C W. Infrared and near-infrared spectroscopic techniques for the quality control of herbal medicines[J]. Evidence-Based Validation of Herbal Medicine (Second Edition), 2022603-627.
[19] LI L K, HOU Y M, LIU X C, et al. An ICT-FRET-based fluorescent probe for the ratiometric sensing of hypochlorous acid based on a coumarin–naphthalimide derivative[J]. New Journal of Chemistry, 2022, 46: 6596-6602.
[20] 田桂芹, 张海亮, 徐鹏飞, 等. 用于体内过氧化氢检测的新型近红外荧光探针[J]. 山东化工, 2022, 51(8): 132-136.
[21] WANG S, ZHANG Y, WANG T, et al. A near-infrared fluorescent probe based on the hemicyanine skeleton for the detection of hydrogen peroxide in vivo.[J]. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 2022, 266: 120435.
[22] WU Z, LIU M, LIU Z, et al. Real-Time imaging and simultaneous quantification of mitochondrial H2O2 and ATP in Neurons with a Single Two-Photon Fluorescence Lifetime-Based Probe[J]. Journal of the American Chemical Society, 2020, 142(16):.7532-7541.
[23] KIM S J, YOON J W, YOON S A, et al. Ratiometric fluorescence assay for nitroreductase activity: locked-flavylium fluorophore as a NTR-sensitive molecular probe[J]. Molecules, 2021, 26(4): 1088.
[24] ZHU Y, CHAO J, ZHU F, et al. Ratiometric fluorescence immunoassay based on FAM-DNA-functionalized CdSe/ZnS QDs for the sensitive detection of tetrabromobisphenol a in foodstuff and the environment[J]. Analytical and Bioanalytical Chemistry, 2020, 412: 3605-3613.
[25] GU T, MO S, MU Y, et al. Detection of endogenous hydrogen peroxide in living cells with para -nitrophenyl oxoacetyl rhodamine as turn-on mitochondria-targeted fluorescent probe[J]. Sensors and Actuators B: Chemical, 2020, 309: 127731.
[26] LEE J, KIM H S, JANGILI P, et al. Fluorescent probe for monitoring hydrogen peroxide in COX-2-positive cancer cells[J]. ACS Applied Bio Materials, 2021, 4(3): 2073-2079.
[27] HAI L G, GUANG C, MIN G, et al. Imaging of endogenous hydrogen peroxide during the process of cell mitosis and mouse brain development with a near-infrared ratiometric fluorescent probe[J]. Analytical Chemistry, 2019, 91: 1203-1210.
[28] CHEN X, REN X, ZHANG L, et al. Mitochondria-Targeted fluorescent and photoacoustic imaging of hydrogen peroxide in inflammation[J]. Analytical Chemistry, 2020, 92(20).
[29] SHENG Z M, GAN Z Z, HUANG H, et al. M-Nx (M = Fe, Co, Ni, Cu) doped graphitic nanocages with high specific surface area for non-enzymatic electrochemical detection of H2O2[J]. Sensors and Actuators B-Chemical, 2020, 305: 1773-1782.
[30] 陈磊. 多功能高分子修饰PbS量子点光纤放大器[J]. 电子测量技术, 2016(9): 4.
[31] PATEL V, KRUSE P, SELVAGANAPATHY P R. Solid state sensors for hydrogen peroxide detection[J]. Biosensors-Basel, 2021, 11(1): 9-39.
[32] 欧丽娟, 李京, 张超群, 等. 氧化反应调控的金纳米簇"关—开"型荧光探针检测过氧化氢和葡萄糖[J]. 光谱学与光谱分析, 2022, 42(12): 3757-3761.
[33] SUNIL K, RAVI P, PRALAY M. Redox mediation through integrating chain extenders in active ionomer polyurethane hard segments in CdS quantum dot sensitized solar cell. 2022, 231: 985-1001.
[34] XIN L, XUE B, YANG L, et al. Protease-activated quantum dot probes based on fluorescence resonance energy transfer[J]. Chinese Science Bulletin, 2013(21): 2657-2662.
[35] CHOUDHARY Y S, GOMATHI N. Synthesis and characterization of CdTe QDs capped with a branched 3MB3MP ligand and fluorescent switching detection of H2O2[J]. New Journal of Chemistry, 2022, 46(11): 4983-4991.
[36] 孙雪花, 强瑜, 郝都婷, 等. 基于类芬顿反应的锌掺杂碳量子点荧光探针测定过氧化氢和胆固醇[J]. 发光学报, 2021, 42(12): 1951-1960.
[37] JIANG L, ZHAO Y, ZHAO P, et al. Electrochemical sensor based on reduced graphene oxide supported dumbbell-shaped CuCo2O4 for real-time monitoring of H2O2 released from cells[J]. Microchemical Journal:Devoted to the Application of Microtechniques in all Branches of Science, 2021, 160(Pta1): 105521.
[38] CHI K N, GUAN Y, ZHANG X, et al. Iodide/Metal-Organic Frameworks (MOF) -mediated signal amplification strategy for the colorimetric detection of H2O2, Cr2O72– and H2S[J]. Analytica Chimica Acta, 2021, 1159: 338378.
[39] DANG L. AuNPs-NH2/Cu-MOF modified glassy carbon electrode as enzyme-free electrochemical sensor detecting H2O2[J]. Journal of Electroanalytical Chemistry, 2020, 856: 113592.
[40] XIU H L, ZHEN Z L, LING L, et al. Ratiometric fluorescence enzyme-linked immunosorbent assay based on carbon dots@SiO2@CdTe quantum dots with dual functionalities for alpha-fetoprotein[J]. Analyst, 2022, 147(12): 2851-2858.
[41] SIES H, BELOUSOV V V, CHANDEL N S, et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology[J]. Nature Reviews Molecular Cell Biology, 20221-17.
[42] WARDE K M, SMITH L J, BASHAM K J. Age-related changes in the adrenal cortex: insights and implications[J]. Journal of the Endocrine Society, 2023.
[43] 姜杨宏岩, 冯蓓, 于亚萍, 等. 靶向肿瘤微环境标志物及其分子影像学应用进展[J]. 中国医学影像学杂志, 2022, 30(12): 1309-1313.
[44] NAN Y, WANYUE X, XUEJIAO S, et al. Recent advances in tumor microenvironment hydrogen peroxide-responsive materials for cancer photodynamic therapy[J]. Nano-Micro Letters, 2020, 12(1): 212-238.