您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>超声全聚焦成像的裂纹类缺陷定量误差分析

超声全聚焦成像的裂纹类缺陷定量误差分析

612    2024-02-02

免费

全文售价

作者:康达1,2, 孔庆茹3, 马啸啸3, 林珊珊1, 张宏1, 马兆光1, 吴慧慧1, 陈尧3

作者单位:1. 北京动力机械研究所,北京 100074;
2. 北京航空航天大学机械工程及自动化学院,北京 100083;
3. 南昌航空大学 无损检测技术教育部重点实验室,江西 南昌 330063


关键词:超声;全聚焦;定量误差;裂纹长度;裂纹取向


摘要:

虽然超声全聚焦成像(total focusing method,TFM)具有直观显示裂纹特征的明显优势,但通过TFM图像进行裂纹定量时不可避免地出现测量误差。该文采用模拟与实验对比的方式,分析TFM技术的裂纹定量误差。从超声波波长对缺陷深度的影响规律入手,分析和研究裂纹长度和取向的全聚焦图像测量误差原因。最后,通过模拟实验对比的方式验证裂纹定量误差。研究结果表明,裂纹上、下尖端的测量深度比实际深度均有所下沉,但两者下沉的深度基本相同,相差在0.6 mm以内,裂纹长度的测量误差范围为0~1 mm,带取向裂纹的取向测量误差基本保持在3°以内。因此,上、下尖端在深度上的测量误差对裂纹长度和取向的影响极小。经实验验证,裂纹深度、长度及取向误差的结论与模拟的结论一致。


Quantitative error analysis of crack defects in ultrasonic total focusing method imaging
KANG Da1,2, KONG Qingru3, MA Xiaoxiao3, LIN Shanshan1, ZHANG Hong1, MA Zhaoguang1, WU Huihui1, CHEN Yao3
1. Beijing Power Machinery Institute, Beijing 100074, China;
2. School of Mechanical Engineering and Automation, Beihang University, Beijing 100083, China;
3. Key Laboratory of Non-destructive Testing Technology,Nanchang Hangkong University, Nanchang 330063, China
Abstract: Although total focusing method (TFM) has obvious advantages in displaying crack characteristics directly, measurement errors will inevitably occur in crack quantification using TFM images. The crack quantitative error of TFM technique was analyzed by simulation and experiment. Based on the influence law of ultrasonic wave length on defect depth, the error causes of the full-focus image measurement of crack length and orientation are analyzed and studied. Finally, the crack quantitative error is verified by simulation and experimental comparison. The results show that the measured depth of the top and bottom tip of the crack is slightly lower than the actual depth, but the sinking depth of the two is basically the same, the difference is within 0.6 mm, the measurement error range of the crack length is 0 to 1 mm, and the orientation measurement error of oriented crack is basically within 3°. Therefore, the measurement errors at the depth of the top and bottom tips have little effect on the crack length and orientation. The experimental results show that the results of crack depth, crack length and crack orientation error are consistent with the simulation results.
Keywords: ultrasonic;total focusing method;sizing error;crack length;crack orientation
2024, 50(2):136-145  收稿日期: 2021-04-30;收到修改稿日期: 2021-06-21
基金项目: 国家自然科学基金(51705232);南昌航空大学研究生创新专项资金项目(YC2022-093)
作者简介: 康达(1991-),男,河北保定市人,工程师,硕士,从事发动机关键部件无损检测研究。
参考文献
[1] 姜禹桐, 熊乐超, 张统伟, 等. 基于弱磁技术的火车轮踏面裂纹检测[J]. 中国测试, 2021, 47(1): 29-35.
JIANG Y T,   XIONG L C,   ZHANG T W. Crack detection of train wheel tread based on weak magnetic technology[J]. China Measurement and Test, 2021, 47(1): 29-35.
[2] 冯玮, 杨辰龙, 边成亮, 等. 基于递归分析的微裂纹缺陷超声检测技术研究[J]. 振动与冲击, 2020, 39(10): 154-162.
FENG W,YANG C L,BIAN C L, et al. Research on microcrack defect ultrasonic detection technology based on recurrence analysis[J]. Journal of Vibration and Shock, 2020, 39(10): 154-162.
[3] 王磊, 郑连学, 陈中荣, 等. 球罐对接焊缝中裂纹、夹渣相控阵识谱技术探讨[J]. 压力容器, 2019, 36(6): 65-71.
WANG L, ZHENG L X, CHEN Z R, et al. Discussion on phased array analysis images technology of cracks and slag inclusions in butt weld of spherical tank[J]. Pressure Vessel Technology, 2019, 36(6): 65-71.
[4] 潘峥, 张邦杰, 汪洪量, 等. 超声相控阵全聚焦成像技术倾斜裂纹定量模拟[J]. 中国测试, 2020, 46(4): 36-41.
PAN Z, ZHANG B J, WANG H L, et al. Simulation on inclined cracks sizing of using the ultrasonic phased array?total focusing imaging technique[J]. China Measurement and Test, 2020, 46(4): 36-41.
[5] HOSEINI M R, WANG X, ZUO M J. Modified relative arrival time technique for sizing inclined cracks[J]. Measurement, 2014, 50: 86-92.
[6] JIE, ZHANG, DRINKWATER B W , WILCOX P D , et al. Defect detection using ultrasonic arrays: The multi-mode total focusing method [J]. Ndt & E International, 2010, 43(2): 123-133.
[7] J.L.罗斯. 固体中的超声波[M]. 何存福, 译. 北京: 科学出版社, 2004.
ROSE J L. Ultrasonic guided waves in solid medium[M]. Beijing: Science Press, 2004.
[8] 谈洋. 超声相控阵裂纹定量检测有限差分法数值模拟 [D]. 大连: 大连理工大学, 2013.
TAN Y. Numerical simulation of ultrasonic phased array for sizing of crack using the finite difference method[D]. Dalian: Dalian University of Technology, 2013.
[9] 宋永贵, 姚晶远. 全自动焊接接头裂纹在AUT检测图谱中特征分析[J]. 无损探伤, 2020, 44(5): 44-46.
[10] 陈尧, 冒秋琴, 石文泽, 等. 基于相位相干性的厚壁焊缝TOFD成像检测研究[J]. 机械工程学报, 2019, 55(4): 25-32.
CHEN Y, MAO Q Q, SHI W Z, et al. Research on ultrasonic TOFD imaging inspection for heavy-walled weld based on phase coherence characteristics[J]. Journal of Mechanical Engineering, 2019, 55(4): 25-32.
[11] 宋绵, 邢涛. 焊缝横向裂纹TOFD检测研究[J]. 森林工程, 2017, 33(4): 65-69.
SONG M,XING T. Research on the TOFD detection of transverse crack in bult weld[J]. Forest Engineering, 2017, 33(4): 65-69.
[12] 马天天, 林莉, 张东辉, 等. 基于TOFD周向扫查的厚壁管道倾斜裂纹精准定量[J]. 仪器仪表学报, 2019, 40(3): 23-29.
MA T T, LIN L, ZHANG D H, et al. Accurate quantification of inclined cracks in thick-walledpipes based on TOFD circumferential scanning[J]. Chinese Journal of Scientific Instrument, 2019, 40(3): 23-29.
[13] SATYANARAYAN L, KUMAR A, JAYAKUMAR T, et al. Sizing cracks in power plant components using array based ultrasonic techniques[J]. Journal of Nondestructive Evaluation, 2009, 28(3): 111-124.
[14] HOLMES C, DRINKWATER B W, WILCOX P D. The post-processing of ultrasonic array data using the total focusing method[J]. Insight:Non-Destructive Testing & Condition Monitoring, 2004, 46(11): 677-680.
[15] 陈尧, 冒秋琴, 陈果, 等. 基于Omega-K算法的快速全聚焦超声成像研究[J]. 仪器仪表学报, 2018, 39(9): 128-134.
CHEN Y, MAO Q Q, CHEN G, et al. Research on high-speed total focusing ultrasonic imagingmethod based on Omega-K algorithm[J].  Chinese Journal of ScientificInstrument, 2018, 39(9): 128-134.
[16] 周正干, 滕利臣, 李洋. 复杂结构焊缝缺陷双线阵全聚焦超声成像方法[J]. 北京航空航天大学学报, 2021, 47(12): 2407-2413.
ZHOU Z G, TENG L C, LI Y. Dual-linear-array TFM ultrasonic imaging method for weld defects of complex structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2407-2413.
[17] 金士杰, 刘晨飞, 史思琪, 等. 基于全模式全聚焦方法的裂纹超声成像定量检测[J]. 仪器仪表学报, 2021, 42(1): 183-190.
JIN S J, LIU C F, SHI S Q, et al. Quantitative crack detection by ultrasonic imaging with the full-mode total focusing method[J]. Chinese Journal of Scientific Instrument, 2021, 42(1): 183-190.